首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
儿科学   1篇
基础医学   12篇
临床医学   1篇
神经病学   27篇
外科学   3篇
综合类   1篇
眼科学   5篇
药学   18篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1983年   2篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
Kim YT  Namkung YL  Kwak J  Suh CK 《Neuroscience》2007,146(1):170-177
Cerebellar Purkinje neurons have intracellular regulatory systems including Ca2+-binding proteins, intracellular Ca2+ stores, Ca2+-ATPase and Na+-Ca2+ exchanger (NCX) that keep intracellular Ca2+ concentration ([Ca2+]i) in physiological range. Among these, NCX interacts with AMPA receptors, activation of which induces cerebellar synaptic plasticity. And the activation of metabotropic glutamate receptor 1 (mGluR1) is also involved in the induction of cerebellar long-term depression. The interaction of NCX with mGluR1 is not known yet. Thus, in this study, the functional relationship between NCX and mGluR1 in modulating the [Ca2+]i in rat Purkinje neurons was investigated. The interaction between NCX and mGluR1 in Purkinje neurons was studied by measuring intracellular Ca2+ transients induced by an agonist of group I mGluRs, 3,5-dihydroxyphenylglycine (DHPG). The DHPG-induced Ca2+ transient was significantly reduced by treatments of NCX inhibitors, bepridil and KB-R7943. When cells were pretreated with antisense oligodeoxynucleotides of NCX, the DHPG-induced Ca2+ transient was also inhibited. These results suggest that NCX modulates the activity of mGluR1 in cerebellar Purkinje neurons. Therefore, NCX appears to play an important role in the physiological function of cerebellar Purkinje neurons such as synaptic plasticity.  相似文献   
2.
Ammonia metabolism,the brain and fatigue; revisiting the link   总被引:1,自引:0,他引:1  
This review addresses the ammonia fatigue theory in light of new evidence from exercise and disease studies and aims to provide a view of the role of ammonia during exercise. Hyperammonemia is a condition common to pathological liver disorders and intense or exhausting exercise. In pathology, hyperammonemia is linked to impairment of normal brain function and the onset of the neurological condition, hepatic encephalopathy. Elevated blood ammonia concentrations arise due to a diminished capacity for removal via the liver and lead to increased exposure of organs, such as the brain, to the toxic effects of ammonia. High levels of brain ammonia can lead to deleterious alterations in astrocyte morphology, cerebral energy metabolism and neurotransmission, which may in turn impact on the functioning of important signalling pathways within the neuron. Such changes are believed to contribute to the disturbances in neuropsychological function, in particular the learning, memory, and motor control deficits observed in animal models of liver disease and also patients with cirrhosis. Hyperammonemia in exercise occurs as a result of an increased production by contracting muscle, through adenosine monophosphate (AMP) deamination (the purine nucleotide cycle) and branched chain amino acid (BCAA) deamination prior to oxidation. Plasma concentrations of ammonia during exercise often achieve or exceed those measured in liver disease patients, resulting in increased cerebral uptake. In this article we propose that exercise-induced hyperammonemia may lead to concomitant disturbances in brain function, potentially through similar mechanisms underpinning pathology, which may impact on performance as fatigue or reduced function, especially during extreme exercise.  相似文献   
3.
In this study, we have investigated the effects of 17beta-estradiol (E2) on chemically induced long-term depression (LTD). LTD was induced by a brief application of N-methyl-D-aspartate (NMDA) or (R,S)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor agonist. Bath application of E2 alone potentiated population excitatory postsynaptic potentials. This potentiation was readily reversed by washing with control saline. The effect of E2 on NMDA-induced LTD was a conversion of LTD to long-term potentiation (LTP). An application of NMDA in the presence of E2 induced LTP. The induction of LTP was inhibited by an inhibitor of calcium/calmodulin dependent protein kinase (CaMKII). The results suggest that E2 potentiates NMDA receptor function and induces an increase in postsynaptic Ca2+ concentration. An increase in postsynaptic Ca2+ concentration activates CaMKII, leading to LTP. In contrast to NMDA-induced LTD, an application of DHPG in the presence of E2 induced significantly larger LTD. The results suggest that E2 potentiates an as yet unidentified process(es) in inducing LTD by an application of DHPG. The effects of E2 both on NMDA-induced and DHPG-induced LTD were suppressed by an estrogen receptor antagonist.  相似文献   
4.
The aim of this study was to compare and contrast the properties of gamma oscillations induced by activation of muscarinic acetylcholine or metabotropic glutamate receptors in the CA3 region of rat hippocampal slices. Both carbachol and the group I metabotropic glutamate receptor agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG), induced network oscillations in the gamma-frequency range (30-100 Hz). The M1 muscarinic receptor antagonist, pirenzepine, blocked carbachol-, but enhanced DHPG-induced oscillations, whereas LY 341495, an antagonist at metabotropic glutamate receptors, abolished DHPG-, but left carbachol-induced oscillations unchanged. There were significant differences in the peak frequency, maximal power, and spectral width of the two oscillations. Pharmacological experiments showed that both types of oscillation depend on fast excitatory and inhibitory synaptic transmission. Interestingly, activation of neurokinin-1 receptors by substance P fragment or enhancement of inhibitory synaptic currents by the benzodiazepine ligand, zolpidem, boosted DHPG-, but reduced the power of carbachol-induced oscillations. These results suggest that, although carbachol and DHPG might activate similar conductances in individual pyramidal cells, the oscillations they induce in slices involve different network mechanisms, most likely by recruiting distinct types of GABAergic interneuron.  相似文献   
5.
Disruption of glutamate homeostasis frequently leads to oxidative stress and to the release of hydroxyl radicals (radical OH). Here, we investigated, via a microdialysis approach, the possible involvement of metabotropic glutamate receptors in the glutamate-induced release of hydroxyl radicals in adult rat striatum. Glutamate was applied at low amount, resulting in a moderate release that was not inhibited by dizocilpine (MK-801), a specific NMDA receptor antagonist. (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG), a broad spectrum metabotropic antagonist, that does not exert any effect on the basal release of radical OH suppressed their response to glutamate. (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), a non-selective metabotropic glutamate receptors agonist, promoted an radical OH release almost similar to that observed after glutamate, which was similarly impaired by co-infusion with MCPG. By contrast, infusion of (RS)-3,5-dihydroxyphenylglycine (DHPG), a more specific group I metabotropic glutamate receptors agonist, did not result in any appreciable radical OH response. Thus, beside NMDA receptors, some metabotropic glutamate receptors may also be involved in the glutamate-induced release of hydroxyl radicals.  相似文献   
6.
Mao L  Wang JQ 《Psychopharmacology》2000,148(4):367-373
Rationale: Group-I metabotropic glutamate receptors (mGluRs) are densely expressed in the medium-sized spiny projection neurons of the striatum. Activation of the group-I mGluRs in the rat striatum with a selective group-I agonist, 3,5-dihydroxyphenylglycine (DHPG), produced locomotion and stereotypical behavior. Objectives: This study was designed to evaluate dependence of DHPG-stimulated motor behaviors on the ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and kainate/α-amino-3-hydroxy-5-methyl-4-isoxazoleprionic acid (AMPA)]. Methods: In chronically cannulated rats, effects on motor activity of DHPG injected into the dorsal striatum were examined in the presence or absence of the antagonists selective for NMDA or kainate/AMPA receptors. Results: Bilateral injections of DHPG (80 nmol) into the dorsal striatum induced a delayed locomotion followed by a prolonged stereotypical behavior characterized by the repetitive twitching movement of the head and forepaws. Blockade of NMDA receptors with intrastriatal injection of the NMDA receptor antagonist, (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 2.5 nmol), did not attenuate the behavioral changes induced by DHPG administration. Conversely, CPP unmasked an early onset of locomotion in response to DHPG injection as opposed to the delayed locomotion induced by DHPG in the absence of CPP. Pretreatment of rats with the kainate/AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 nmol), had no effect on DHPG-stimulated behaviors. CPP administered alone sedated animals, whereas DNQX given alone did not alter spontaneous behavioral activity. Conclusions: Motor stimulation induced by activation of the DHPG-sensitive group-I mGluRs in the striatum is independent upon co-activation of NMDA or kainate/AMPA receptors, since the NMDA or the kainate/AMPA receptor antagonist had no effect on DHPG-stimulated motor activity. Received: 6 April 1999 / Final version: 28 September 1999  相似文献   
7.
From previous work, it appears that glutamate can activate the hypothalamic-pituitary-adrenocortical (HPA) axis by an interaction at either ionotopic or metabotropic (G-protein coupled) receptors. For example, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a metabotropic glutamate (mGlu) receptor agonist, has been shown to increase the levels of serum corticosterone in rats. The present study was undertaken to further characterize which of the mGlu receptors are substantially involved in control of the HPA axis. The group I mGlu receptor agonists, 3,5-dihydroxyphenylglycine (DHPG), 1S,3R-ACPD, and 2-chloro-5-hydroxyphenylglycine (CHPG) but not the inactive isomer 1R,3S-ACPD were found to dose-dependently increase serum corticosterone 1 h after intracerebroventricular (i.c.v.) injection in male rats. The relative potency, DHPG (EC50 = 520 nmol) > 1S,3R-ACPD (1.4 micromol) = CHPG (2.7 micromol) > 1R,3S-ACPD (> 3 micromol) is consistent with activation of group I (mGlu1/5) receptors. The effects of DHPG were long lasting with substantial elevations in corticosterone remaining for at least 3 h. In a similar manner, the group III mGlu receptor agonists, L-AP4 (4-phosphono-2-aminobutyric acid) and L-SOP (serine-O-phosphate), were found to increase serum corticosterone levels at 1 h. In contrast, the mGlu group II selective agonists LY354740 (10 mg/kg, i.p.) and subtype-selective doses of the group II antagonist LY341495 (1 mg/kg, i.p.) did not significantly elevate serum corticosterone. Given the group I agonists results, it was surprising to find that group I selective and mGlu1 selective antagonists given alone also increased serum corticosterone. As with the agonists, the rise in serum corticosterone with LY393675 (an mGlu1/5 antagonist, EC50 = 20 nmol, i.c.v.) and LY367385 (an mGlu1 antagonist, 325 nmol, i.c.v.) were dose-dependent and consistent with their relative affinity for the group I mGlu receptors. The selective mGlu5 antagonist MPEP [2-methyl-6-(phenylethylnyl)pyridine] increased serum corticosterone but only at high doses (> 30 mg/kg, i.p.). A model involving the high glutamatergic tone on GABAergic interneurons in the paraventricular nucleus of the hypothalamus is discussed as a possible explanation for these results.  相似文献   
8.
Various diesters of 9-[(l,3-dihydroxy-2-propoxy)-methyl]guanine (DHPG) were screened in order to identify a derivative with improved oral absorption. The solubilities and dissolution rates decreased with increasing chain length and branching of the ester group. However, the dipropionate ester showed an anomalously faster dissolution rate. The rates of hydrolysis to DHPG in the presence of intestinal homogenates were found to increase with increasing carbon number for the straight-chain alkyl esters and decreased with branching. The shorter-chain alkyl esters were relatively more stable in intestinal homogenates than in liver homogenates. Therefore they may have a better membrane permeability than DHPG due to their intact ester group. The hydrolysis rates in human blood increased with increasing carbon number for the straight-chain alkyl esters. The dipropionate ester appeared to be the most promising derivative because of its rapid dissolution rate, slower hydrolysis in the intestine, and rapid conversion to DHPG in liver and blood.  相似文献   
9.
目的:探讨Ⅰ组代谢型谷氨酸受体(mGluRs)激活对离体脊髓运动神经元(MN)下行激活的调制作用.方法:应用新生大鼠(7~14 d)脊髓切片MN细胞内记录技术,记录脊髓同侧腹外侧索(iVLF)电刺激诱发的兴奋性突触后电位(EPSP,即iVLF-EPSP),观察Ⅰ组mGluRs激动剂(S)-3,5-二羟基苯基甘氨酸(DH...  相似文献   
10.
A superfusion system was used to study the effects of metabotropic glutamate receptor (mGluR) ligands upon the release of [(3)H]dopamine ([(3)H]DA) previously taken up by rat substantia nigra (SN) slices. trans-(+/-)-1-Amino-(1S,3R)-cyclopentane dicarboxylic acid (trans-ACPD; 100 and 600 microM), a group I and II mGluR agonist, evoked the release of [(3)H]DA from nigral slices. This last effect was reduced significantly by (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)-glycine (MCCG; 300 microM), an antagonist of group II mGluR, or by the addition of tetrodotoxin (D-APV; 1 microM) to the superfusion medium. D-(-)-2-Amino-5-phosphono-valeric acid (100 microM), an N-methyl-D-aspartate receptor antagonist, or the presence of Mg(2+) (1.2mM) in the superfusion medium did not modify trans-ACPD-induced [(3)H]DA release. In addition, a group II mGluR agonist such as (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG-IV; 100 microM) significantly induced the release of [(3)H]DA from nigral slices, whereas a group I mGluR agonist such as (RS)-3,5-dihydroxyphenylglycine (DHPG; 50 and 100 microM) did not modify the release of the [(3)H]-amine. Further experiments showed that the NMDA (100 microM)-evoked release of [(3)H]DA was decreased significantly by prior exposure of SN slices to trans-ACPD. Finally, partial denervation of the DA nigro-striatal pathway with 6-hydroxydopamine (6-OH-DA) increased trans-ACPD-induced release of [(3)H]DA, whereas it decreased trans-ACPD inhibitory effects on NMDA-evoked release of [(3)H]DA from nigral slices. The present results suggest that the dendritic release of DA in the SN is regulated by mGluR activation. Such nigral mGluR activation may produce opposite effects upon basal and NMDA-evoked release of DA in the SN. In addition, such mGluR-induced effects in the SN are modified in response to partial denervation of the DA nigro-striatal pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号