首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   10篇
儿科学   3篇
妇产科学   1篇
基础医学   65篇
口腔科学   5篇
临床医学   4篇
内科学   4篇
皮肤病学   10篇
外科学   1篇
综合类   1篇
眼科学   4篇
  2021年   4篇
  2020年   2篇
  2017年   2篇
  2015年   6篇
  2014年   5篇
  2013年   13篇
  2012年   1篇
  2011年   6篇
  2010年   8篇
  2009年   7篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有98条查询结果,搜索用时 31 毫秒
1.
In order to estimate the contribution of mutations at the fibrillin-1 locus (FBN1) to classical Marfan syndrome (MFS) and to study possible phenotypic differences between patients with an FBN1 mutation vs. without, a comprehensive molecular study of the FBN1 gene in a cohort of 93 MFS patients fulfilling the clinical diagnosis of MFS according to the Ghent nosology was performed. The initial mutation screening by CSGE/SSCP allowed identification of an FBN1-mutation in 73 patients. Next, sequencing of all FBN1-exons was performed in 11 mutation-negative patients, while in nine others, DHPLC was used. This allowed identification of seven and five additional mutations, respectively. Southern blot analysis revealed an abnormal hybridization pattern in one more patient. A total of 23 out of the 85 mutations identified here are reported for the first time. Phenotypic comparison of MFS patients with cysteine-involving mutations vs. premature termination mutations revealed significant differences in ocular and skeletal involvement. The phenotype of the eight patients without proven FBN1 mutation did not differ from the others with respect to the presence of major cardiac, ocular, and skeletal manifestations or positive familial history. Most likely, a portion of FBN1-mutations remains undetected because of technical limitations. In conclusion, the involvement of the FBN1-gene could be demonstrated in at least 91% of all MFS patients (85/93), which strongly suggests that this gene is the predominant, if not the sole, locus for MFS.  相似文献   
2.
Mutations in the human fibrillin 1 gene (FBN1) cause the Marfan syndrome (MFS), an autosomal dominant connective tissue disorder. Knowledge about FBN1 mutations is important for early diagnosis, management, and genetic counseling. However, mutation detection in FBN1 is a challenge because the gene is very large in size ( approximately 200 kb) and the approximately 350 mutations detected so far are scattered over 65 exons. Conventional methods for large-scale detection of mutations are expensive, technically demanding, or time consuming. Recently, a high-capacity low-cost mutation detection method was introduced based on denaturing high-performance liquid chromatography (DHPLC). To assess the sensitivity and specificity of this method, we blindly screened 64 DNA samples of known FBN1 genotype exon-by-exon using exon-specific DHPLC conditions. Analysis of 682 PCR amplicons correctly identified 62 out of 64 known sequence variants. In three MFS patients of unknown FBN1 genotype, we detected two mutations and eight polymorphisms. Overall, 20 mutations and two polymorphisms are described here for the first time. Our results demonstrate 1) that DHPLC is a highly sensitive (89-99%, P = 0.05) method for FBN1 mutation detection; but 2) that chromatograms with moderate and weak pattern abnormalities also show false positive signals (in all 45-59%, P = 0.05); 3) that the difference in the chromatograms of heterozygous and homozygous amplicons is mostly independent of the type of sequence change; and 4) that DHPLC column conditions, additional base changes, and the amounts of injected PCR products influence significantly the shape of chromatograms. A strategy for FBN1 mutation screening is discussed.  相似文献   
3.
马凡综合征微纤维蛋白1基因突变检测及单倍型连锁分析   总被引:1,自引:0,他引:1  
目的:检测中国人马凡综合征(Marfan syndrome,MFS)患者微纤维蛋白1(fibillin-1,FBN1)基因的突变及对马凡综合征患者的家系成员进行症状前诊断。方法:应用聚合酶链反应-单链构象多态性技术和测序方法,对汉族9个家系中共17个MFS患者进行基因突变检测;运用FBN1基因内4个内含子中的可变串联重复序列构建染色体单倍型,进行家系单倍型连锁分析和基因诊断。结果:发现MFS(A)家系Ⅱ1患者有单链构象改变,测序证实为位于FBN1基因第25号外显子3243-3256核苷酸之间有I个13bp的小片段缺失,为新位点基因移码突变,其序列为gcctctgcaccca;单倍型连锁分析发现MFS(B)家系Ⅲ1是1个无症状期患者。结论:中国人FBN1基因突变可以引起马凡综合征,应用突变检测与单倍型连锁分析方法能为马凡综合征基因诊断提供依据。  相似文献   
4.
The Marfan syndrome (MFS) is a pleiotropic, autosomal dominant disorder of connective tissue with highly variable clinical manifestations including aortic dilatation and dissection, ectopia lentis, and a series of skeletal anomalies. Mutations in the gene for fibrillin-1 (FBN1) cause MFS, and at least 337 mainly unique mutations have been published to date. FBN1 mutations have been found not only in MFS but also in a range of connective tissue disorders collectively termed fibrillinopathies ranging from mild phenotypes, such as isolated ectopia lentis, to severe disorders including neonatal MFS, which generally leads to death within the first two years of life. The present article intends to provide an overview of mutations found in MFS and related disorders and to discuss potential genotype-phenotype correlations in MFS.  相似文献   
5.
In this second of a 5-part Focus Seminar series, we focus on precision medicine in the context of vascular disease. The most common vascular disease worldwide is atherosclerosis, which is the primary cause of coronary artery disease, peripheral vascular disease, and a large proportion of strokes and other disorders. Atherosclerosis is a complex genetic disease that likely involves many hundreds to thousands of single nucleotide polymorphisms, each with a relatively modest effect for causing disease. Conversely, although less prevalent, there are many vascular disorders that typically involve only a single genetic change, but these changes can often have a profound effect that is sufficient to cause disease. These are termed “Mendelian vascular diseases,” which include Marfan and Loeys-Dietz syndromes. Given the very different genetic basis of atherosclerosis versus Mendelian vascular diseases, this article was divided into 2 parts to cover the most promising precision medicine approaches for these disease types.  相似文献   
6.
Overgrowth of limbs and spinal deformities are typical clinical manifestations of Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA), caused by mutations of the genes encoding fibrillin‐1 (FBN1) and fibrillin‐2 (FBN2), respectively. FBN1 mutations are also associated with acromicric (AD) and geleophysic dysplasias (GD), and with Weill–Marchesani syndrome (WMS), which is characterised by short stature. The mechanisms leading to such abnormal skeletal growth and the involvement of the fibrillins are not understood. Postnatal longitudinal bone growth mainly occurs in the epiphyseal growth plate. Here we investigated the organisation of fibrillin microfibrils in the growth plate of the long bone and vertebra immunohistochemically. Fibrillin‐1 was dual‐immunostained with elastin, with fibrillin‐2 or with collagen X. We report that fibrillin microfibrils are distributed throughout all regions of the growth plate, and that fibrillin‐1 and fibrillin‐2 were differentially organised. Fibrillin‐1 was more abundant in the extracellular matrix of the resting and proliferative zones of the growth plate than in the hypertrophic zone. More fibrillin‐2 was found in the calcified region than in the other regions. No elastin fibres were observed in either the proliferative or hypertrophic zones. This study indicates that, as fibrillin microfibrils are involved in growth factor binding and may play a mechanical role, they could be directly involved in regulating bone growth. Hence, mutations of the fibrillins could affect their functional role in growth and lead to the growth disorders seen in patients with MFS, CCA, AD, GD and WMS.  相似文献   
7.
The ciliary zonule in the eye, also known as Zinn’s zonule, is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1. However, it is still unclear which of the microfibril-associated molecules present in the ciliary zonule controls oxytalan fibers. Microfibril-associated glycoprotein-1 (MAGP-1) is the only microfibril-associated molecule identified in the human ciliary zonule. In the present study, we used siRNA against MAGP-1 in cultures of human non-pigmented ciliary epithelial cells to examine the extracellular deposition and appearance of fibrillin-1 employing Western blotting and immunofluorescence. MAGP-1 suppression led to a reduction of fibrillin-1 deposition. Immunofluorescence also confirmed that RNAi-mediated down-regulation of MAGP-1 led to suppression of fiber development. These results suggest that MAGP-1 plays a crucial role in the extracellular deposition of fibrillin-1 during formation of the human ciliary zonule.  相似文献   
8.
Dorsoventral fibers in the presumptive dermis of the chick limb bud reported first by Hurle's group in 1989 are now revealed as bundles of fibrillin microfibrils (Isokawa et al., 2004). The bundles, which could be called oxytalan fibers at the light microscopic level, are aligned perpendicularly to the overlying ectoderm and form a unique fiber array, originating directly from the basal lamina. This well‐oriented organization is beneficial in examining the process of in vivo bundling of microfibrils into oxytalan fibers. In this study, sections through the presumptive limb dermis were preferentially prepared from chick embryos at Days 4–6 (ED4‐6). Immunohistochemically, fibrillin‐positive dots representing cross‐sectioned surfaces of individual fibers, increased in size from ED4 to 6, but their number per unit area remained constant. Ultrastructurally, a single oxytalan fiber at ED4 consisted of ~15 microfibrils; the latter number increased fourfold from ED4 to 5 and threefold from ED5 to 6. Oxytalan fibers were all closely associated with mesenchymal cell; notably, the fibers at ED5 and 6 were held in a shallow ditch on the cell body or by lamellipodial cytoplasmic protrusion. In the sites of cell–fiber adhesion, microfibrils in the periphery of an oxytalan fiber appeared to adhere directly or by means of short flocculent strands to a nearby cell membrane; the latter showed a thickening of plasmalemma and its undercoat, indicating the presence of adhesive membrane specification. These findings suggest that the bundling of microfibrils is a progressive and closely cell‐associated process. Anat Rec, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
Pectus excavatum (PE) is the most frequent anterior chest deformity which may be frequently associated with connective tissue disorders. We performed microscopic analyses to better understand cartilage behavior and obtain clues on its pathogenesis. In 37 PE patients, none with Marfan syndrome, we analyzed costal cartilage by light microscopy, immunohistochemistry and transmission electron microscopy. Control tissue specimens were harvested from four patients without any connective tissue disease. In both control and PE patients, chondrocytes were on the average <15 µm in diameter and occupied <10% of tissue volume; in most cases the extracellular matrix was stained by alcian blue, instead of safranin; no difference between PE and control samples was significant. All samples showed an uneven collagen type II immunolabeling both within the cells and pericellular matrix, and occasionally of the territorial matrix. In all cases numerous cells underwent apoptosis accompanied by matrix condensation as shown by electron microscopy. Our results suggest that matrix composition and the cell number and size of costal cartilage are dependent on the subject and not on the disease; the microscopic organization of cartilage is correlated with the stabilization of the defective shape rather than with the onset of the deformity. Anat Rec, 296:1813–1820, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
10.
For more than a century there has been debate concerning the mechanism of accommodation—whether the lens capsule or lens material itself determines the functional relationship between ciliary muscle contractility and lens deformation during refractive adaptation. This morphological study in monkey eyes investigates the composition and distribution of several connective tissue components in the accommodative apparatus relaying muscle force to lens organization. Elastin distributes on the marginal surface of the ciliary process. A zonule is composed of fibrillin produced by epithelial cells of the process. In the progress of extension over the posterior chamber, fibrils unite into strands and possess longitudinal plasticity. By induction of the elastin network, strands extend in a concentric direction covering the equatorial region of the capsule. Upon tethering to the lens, the strand ramifies into fibrils, penetrating deeply close to the epithelial layer of the lens and binding with the collagen of the intercellular spaces. Tight linkage of the zonule with the capsule transmits precise contractility. Inside the lens, the cortical layer's elastic connective tissue network forms widely spaced lamellae of crystalline fibers. In contrast, the central nuclear lamellae are tightly opposed. The accumulation of lamellae is greater in the anterior cortex than in the posterior, yielding a more variable anterior chamber depth in the visual axis. The plasticity of the zonule and connective tissue distribution inside the lens produces an adjustable configuration. Thus, tight linkage between the dynamism of the capsule with interaction of the lenticular flexibility provides a novel understanding of accommodation. Anat Rec, 298:630–636, 2015. © 2014 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号