首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13112篇
  免费   1070篇
  国内免费   311篇
耳鼻咽喉   48篇
儿科学   92篇
妇产科学   116篇
基础医学   1081篇
口腔科学   79篇
临床医学   1394篇
内科学   1781篇
皮肤病学   100篇
神经病学   946篇
特种医学   2120篇
外国民族医学   6篇
外科学   1761篇
综合类   1827篇
现状与发展   2篇
一般理论   1篇
预防医学   898篇
眼科学   183篇
药学   1036篇
  9篇
中国医学   378篇
肿瘤学   635篇
  2024年   46篇
  2023年   361篇
  2022年   545篇
  2021年   762篇
  2020年   670篇
  2019年   592篇
  2018年   439篇
  2017年   415篇
  2016年   418篇
  2015年   491篇
  2014年   763篇
  2013年   816篇
  2012年   715篇
  2011年   728篇
  2010年   585篇
  2009年   655篇
  2008年   665篇
  2007年   616篇
  2006年   565篇
  2005年   471篇
  2004年   393篇
  2003年   338篇
  2002年   266篇
  2001年   248篇
  2000年   211篇
  1999年   183篇
  1998年   145篇
  1997年   171篇
  1996年   133篇
  1995年   128篇
  1994年   120篇
  1993年   89篇
  1992年   84篇
  1991年   49篇
  1990年   64篇
  1989年   60篇
  1988年   47篇
  1987年   42篇
  1986年   34篇
  1985年   60篇
  1984年   46篇
  1983年   27篇
  1982年   34篇
  1981年   35篇
  1980年   30篇
  1979年   28篇
  1978年   20篇
  1977年   29篇
  1976年   19篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Molecular therapy》2022,30(8):2856-2867
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   
2.
3.
Background  The data visualization literature asserts that the details of the optimal data display must be tailored to the specific task, the background of the user, and the characteristics of the data. The general organizing principle of a concept-oriented display is known to be useful for many tasks and data types. Objectives  In this project, we used general principles of data visualization and a co-design process to produce a clinical display tailored to a specific cognitive task, chosen from the anesthesia domain, but with clear generalizability to other clinical tasks. To support the work of the anesthesia-in-charge (AIC) our task was, for a given day, to depict the acuity level and complexity of each patient in the collection of those that will be operated on the following day. The AIC uses this information to optimally allocate anesthesia staff and providers across operating rooms. Methods  We used a co-design process to collaborate with participants who work in the AIC role. We conducted two in-depth interviews with AICs and engaged them in subsequent input on iterative design solutions. Results  Through a co-design process, we found (1) the need to carefully match the level of detail in the display to the level required by the clinical task, (2) the impedance caused by irrelevant information on the screen such as icons relevant only to other tasks, and (3) the desire for a specific but optional trajectory of increasingly detailed textual summaries. Conclusion  This study reports a real-world clinical informatics development project that engaged users as co-designers. Our process led to the user-preferred design of a single binary flag to identify the subset of patients needing further investigation, and then a trajectory of increasingly detailed, text-based abstractions for each patient that can be displayed when more information is needed.  相似文献   
4.
BackgroundParkinson’s disease (PD) is a chronic and progressive neurodegenerative disease with no cure, presenting a challenging diagnosis and management. However, despite a significant number of criteria and guidelines have been proposed to improve the diagnosis of PD and to determine the PD stage, the gold standard for diagnosis and symptoms monitoring of PD is still mainly based on clinical evaluation, which includes several subjective factors. The use of machine learning (ML) algorithms in spatial-temporal gait parameters is an interesting advance with easy interpretation and objective factors that may assist in PD diagnostic and follow up.Research questionThis article studies ML algorithms for: i) distinguish people with PD vs. matched-healthy individuals; and ii) to discriminate PD stages, based on selected spatial-temporal parameters, including variability and asymmetry.MethodsGait data acquired from 63 people with PD with different levels of PD motor symptoms severity, and 63 matched-control group individuals, during self-selected walking speed, was study in the experiments.ResultsIn the PD diagnosis, a classification accuracy of 84.6 %, with a precision of 0.923 and a recall of 0.800, was achieved by the Naïve Bayes algorithm. We found four significant gait features in PD diagnosis: step length, velocity and width, and step width variability. As to the PD stage identification, the Random Forest outperformed the other studied ML algorithms, by reaching an Area Under the ROC curve of 0.786. We found two relevant gait features in identifying the PD stage: stride width variability and step double support time variability.SignificanceThe results showed that the studied ML algorithms have potential both to PD diagnosis and stage identification by analysing gait parameters.  相似文献   
5.
Purpose: To study, with computational models, the utility of power modulation to reduce tissue temperature heterogeneity for variable nanoparticle distributions in magnetic nanoparticle hyperthermia.

Methods: Tumour and surrounding tissue were modeled by elliptical two- and three-dimensional computational phantoms having six different nanoparticle distributions. Nanoparticles were modeled as point heat sources having amplitude-dependent loss power. The total number of nanoparticles was fixed, and their spatial distribution and heat output were varied. Heat transfer was computed by solving the Pennes’ bioheat equation using finite element methods (FEM) with temperature-dependent blood perfusion. Local temperature was regulated using a proportional-integral-derivative (PID) controller. Tissue temperature, thermal dose and tissue damage were calculated. The required minimum thermal dose delivered to the tumor was kept constant, and heating power was adjusted for comparison of both the heating methods.

Results: Modulated power heating produced lower and more homogeneous temperature distributions than did constant power heating for all studied nanoparticle distributions. For a concentrated nanoparticle distribution, located off-center within the tumor, the maximum temperatures inside the tumor were 16% lower for modulated power heating when compared to constant power heating. This resulted in less damage to surrounding normal tissue. Modulated power heating reached target thermal doses up to nine-fold more rapidly when compared to constant power heating.

Conclusions: Controlling the temperature at the tumor-healthy tissue boundary by modulating the heating power of magnetic nanoparticles demonstrably compensates for a variable nanoparticle distribution to deliver effective treatment.  相似文献   

6.
Background  Machine learning (ML) has captured the attention of many clinicians who may not have formal training in this area but are otherwise increasingly exposed to ML literature that may be relevant to their clinical specialties. ML papers that follow an outcomes-based research format can be assessed using clinical research appraisal frameworks such as PICO (Population, Intervention, Comparison, Outcome). However, the PICO frameworks strain when applied to ML papers that create new ML models, which are akin to diagnostic tests. There is a need for a new framework to help assess such papers. Objective  We propose a new framework to help clinicians systematically read and evaluate medical ML papers whose aim is to create a new ML model: ML-PICO (Machine Learning, Population, Identification, Crosscheck, Outcomes). We describe how the ML-PICO framework can be applied toward appraising literature describing ML models for health care. Conclusion  The relevance of ML to practitioners of clinical medicine is steadily increasing with a growing body of literature. Therefore, it is increasingly important for clinicians to be familiar with how to assess and best utilize these tools. In this paper we have described a practical framework on how to read ML papers that create a new ML model (or diagnostic test): ML-PICO. We hope that this can be used by clinicians to better evaluate the quality and utility of ML papers.  相似文献   
7.
8.
9.
Fetal activity parameters such as movements, heart rate and the related parameters are essential indicators of fetal wellbeing, and no device provides simultaneous access to and sufficient estimation of all of these parameters to evaluate fetal health. This work was aimed at collecting these parameters to automatically separate healthy from compromised fetuses. To achieve this goal, we first developed a multi-sensor–multi-gate Doppler system. Then we recorded multidimensional Doppler signals and estimated the fetal activity parameters via dedicated signal processing techniques. Finally, we combined these parameters into four sets of parameters (or four hyper-parameters) to determine the set of parameters that is able to separate healthy from other fetuses. To validate our system, a data set consisting of two groups of fetal signals (normal and compromised) was established and provided by physicians. From the estimated parameters, an instantaneous Manning-like score, referred to as the ultrasonic score, was calculated and was used together with movements, heart rate and the associated parameters in a classification process employing the support vector machine method. We investigated the influence of the sets of parameters and evaluated the performance of the support vector machine using the computation of sensibility, specificity, percentage of support vectors and total classification error. The sensitivity of the four sets ranged from 79% to 100%. Specificity was 100% for all sets. The total classification error ranged from 0% to 20%. The percentage of support vectors ranged from 33% to 49%. Overall, the best results were obtained with the set of parameters consisting of fetal movement, short-term variability, long-term variability, deceleration and ultrasound score. The sensitivity, specificity, percentage of support vectors and total classification error of this set were respectively 100%, 100%, 35% and 0%. This indicated our ability to separate the data into two sets (normal fetuses and pathologic fetuses), and the results highlight the excellent match with the clinical classification performed by the physicians. This work indicates the feasibility of detecting compromised fetuses and also represents an interesting method of close fetal monitoring during the entire pregnancy.  相似文献   
10.

Background

The purpose of this analysis is to describe the differences in cardiac magnetic resonance characteristics between benign and malignant tumors, which would be helpful for surgical planning.

Methods

This was a prospective cohort study of 130 patients who underwent cardiac magnetic resonance imaging for evaluation of a suspected cardiac mass. After excluding thrombi and tumors without definitive diagnosis, 66 tumors were evaluated for morphologic features and tissue composition.

Results

Of the 66 patients, 39 (59.0%) had malignant tumors and 27 (41.0%) had benign tumors. Patients with malignant tumors were younger when compared with those with benign tumors (age 51 years [42.8-60.0] vs 65 years [60.0-71.0] median). Malignant tumors more often demonstrated tumor invasion (69% vs 0% P < .001) and were more often associated with pericardial effusion (41% vs 7.4% P = .004). Presence of first-pass perfusion (100% vs 33% P < .001) and late gadolinium enhancement (100% vs 59.2%, P < .001) were significantly higher in malignant tumors. In logistic regression modeling, tumor invasion (P < .001) and first-pass perfusion (P < .001) were independently associated with malignancy. Furthermore, using classification and regression tree analysis, we developed a decision tree algorithm to help differentiate benign from malignant tumors (diagnostic accuracy ~90%). The algorithm-weighted cost of misclassifying a malignant tumor as benign was twice that of classifying a benign tumor as malignant.

Conclusions

Our study demonstrates that cardiac magnetic resonance imaging is a useful noninvasive method for differentiating malignant from benign cardiac tumors. Tumor size, invasion, and first-pass perfusion were useful imaging characteristics in differentiating benign from malignant tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号