首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
口腔科学   1篇
临床医学   2篇
内科学   136篇
皮肤病学   1篇
外科学   2篇
综合类   6篇
药学   4篇
  2023年   1篇
  2022年   50篇
  2021年   72篇
  2020年   6篇
  2015年   6篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2009年   2篇
  1995年   1篇
  1988年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
In this paper, we propose an efficient mortar spectral element approximation scheme for full-potential electronic structure calculations. As a subsequent work of [24], the paper adopts a similar domain decomposition that the computational domain is first decomposed into a number of cuboid subdomains satisfying each nucleus is located in the center of one cube, in which a small ball element centered at the site of the nucleus is attached, and the remainder of the cube is further partitioned into six curvilinear hexahedrons. Specially designed Sobolev-orthogonal basis is adopted in each ball. Classic conforming spectral element approximations using mapped Jacobi polynomials are implemented on the curvilinear hexahedrons and the cuboid elements without nuclei. A mortar technique is applied to patch the different discretizations. Numerical experiments are carried out to demonstrate the efficiency of our scheme, especially the spectral convergence rates of the ground state approximations. Essentially the algorithm can be extended to general eigenvalue problems with the Coulomb singularities.  相似文献   
2.
The use of repair mortars for concrete structures repair with no or limited resistance to the impact caused by freeze and thaw cycles is often the primary repair failure cause. This is particularly important in Poland. Due to the geographical location of the country, there is a large temperature difference between summer and winter. The number of passes through the threshold temperature of 0 °C throughout the year in the winter season exceeds 100. The article presents a comparison of the frost resistance results of tests of repair mortars. The first method was performed according to the Polish Guidelines (without the use of de-icing salts) and the second method according to PN-EN 1504-3 (with the use of de-icing salts). The results obtained were inconsistent in many areas. In particular, significant differences in the results for the change in compressive strength and the change in bending strength were observed. In the case of the frost resistance testing without the use of de-icing salts, a decrease in compressive strength was usually accompanied by a decrease in bending strength. In the case of frost resistance tests with the use of de-icing salts, an increase in the bending strength of mortars was observed (even by a dozen or so percent) with a decrease in the compressive strength of mortars (even by several dozen percent).  相似文献   
3.
This article presents research on selected physical and mechanical properties of cement-based plasters and masonry mortars with consistency-improving additives, namely, traditional hydrated lime and a plasticizing and aerating mixture (APA), which, in practice, is often considered to be a lime substitute. Comparative analysis of the properties of mortars with alternative additives—lime or APA—was carried out, taking into consideration possible effects of cement, as two types of Portland cement were used for the research. For fresh mortar, mixture consistency, air content, resistance to segregation, and water retention were determined. Tests on hardened mortars included tests of porosity and impermeability, depth of penetration of water under pressure, drying shrinkage, as well as compressive and bending strength, modulus of elasticity, and adhesion of mortars to the base. In addition, research has shown that cement–lime mortars and cement mortars with APA admixture of similar consistency in the fresh state are characterized by significantly different properties. The results show, in most of the features analyzed, more favorable properties of mortars with the use of traditional lime. For shrinkage only, the use of admixture turned out to be more advantageous.  相似文献   
4.
The properties of cement concrete using waste materials—namely, recycled cement mortar, fly ash–slag, and recycled concrete aggregate—are presented. A treatment process for waste materials is proposed. Two research experiments were conducted. In the first, concretes were made with fly ash–slag mix (FAS) and recycled cement mortar (RCM) as additions. The most favorable content of the concrete additive in the form of RCM and FAS was determined experimentally, and their influence on the physical and mechanical properties of concrete was established. For this purpose, 10 test series were carried out according to the experimental plan. In the second study, concretes containing FAS–RCM and recycled concrete aggregate (RCA) as a 30% replacement of natural aggregate (NA) were prepared. The compressive strength, frost resistance, water absorption, volume density, thermal conductivity, and microstructure were researched. The test results show that the addition of FAS–RCM and RCA can produce composites with better physical and mechanical properties compared with concrete made only of natural raw materials and cement. The detailed results show that FAS–RCM can be a valuable substitute for cement and RCA as a replacement for natural aggregates. Compared with traditional cement concretes, concretes made of FAS, RCM, and RCA are characterized by a higher compressive strength: 7% higher in the case of 30% replacement of NA by RCA with the additional use of the innovative FAS–RCM additive as 30% of the cement mass.  相似文献   
5.
The polymer cement mortar (PCM) overlay method is a promising solution for strengthening deteriorated concrete structures in which the occurrence of premature debonding at the interfaces prevents the strengthened structures from achieving full serviceability. The purpose of this study is to improve the concrete–PCM interfacial bond to prevent premature debonding. There are two main focuses of this study: (i) investigation of the effectiveness of adding 5% silica fume to PCM in forming a chemical connection between concrete and PCM, based on a direct single-surface shear test using two roughness levels of concrete (smooth and rough) and microstructure analysis and (ii) performance evaluation of the bond between substrate concrete and a PCM overlay with/without silica fume at early ages and with different moisture conditions at the interface, based on a bi-surface shear test using rough substrate concrete surface. The inclusion of 5% silica fume with PCM caused an improvement in the interfacial strength (approximately 113% relative to the normal PCM in cases of without primer), with a smooth concrete substrate surface where mechanical bonding had less influence. In addition, lower Ca/Si values in the interface of modified 5% silica PCM specimens compared to the normal PCM specimens quantified by energy-dispersive X-ray spectroscopy (EDS) indicate the formation of a chemical connection at the concrete–PCM interface by transforming harmful Ca(OH)2 into more C-S-H which strongly improves the bonding strength. As a repair layer mortar, the positive influence of silica fume in modified 5% silica PCM specimens was also found at early ages and with different moisture conditions at the interface compared to the normal PCM. In conclusion, the addition of silica fume to the PCM caused chemical connection at the concrete–PCM interface and improved the interfacial performance.  相似文献   
6.
The amount of fly ash from the incineration of sewage sludge is increasing all over the world, and its utilization is becoming a serious environmental problem. In the study, a type of sewage sludge ash (SSA) collected directly from the municipal sewage treatment plant was used. Five levels of cement replacement (2.5%, 5%, 7.5%, 10% and 20%) and unchanged water-to-binder (w/b) ratio (0.55) were used. The purpose of the study was to evaluate the effect of sewage sludge ash (SSA) on the hydration heat process of cement mortars. The heat of the hydration of cement mortars was monitored by the isothermal calorimetric method for 7 days at 23 °C. The analysis of chemical composition and particle size distribution was performed on the tested material. The tests carried out have shown that SSA particles have irregular grain morphology and, taking into account the chemical composition consists mainly of oxides such as CaO, P2O5, SiO2 and Al2O3. The concentration of these compounds affects the hydration process of cement mortars doped with SSA. In turn, the content of selected heavy metals in the tested ash should not pose a threat to the environment. Calorimetric studies proved that the hydration process is influenced by the presence of SSA in cement mortars. The studies showed that the rate of heat generation decreased (especially in the initial setting period) with the increasing replacement of cement by SSA, which also reduced the amount of total heat compared to the control cement mortar. With increasing mass of the replacement of cement with SSA up to 20%, the 7-day compressive strength of the mortar samples decreases.  相似文献   
7.
The aim of the research is to quantify the property of asphalt mortar and asphalt mixture containing municipal solid waste incineration (MSWI) fly ash. The potential of partially replacing mineral fillers with MSWI fly ash in asphalt mixture production was investigated. Five different MSWI fly ash replacement ratios, which include 0%, 25%, 50%, 75%, and 100%, were adopted to assess the influence of fly ash dosage, and the optimum fly ash replacement ratio was proposed. The rheological characteristics of asphalt mortar with MSWI fly ash were assessed with the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The high temperature properties of the mixture with MSWI fly ash were assessed with the Marshall stability test and the rutting test. The low temperature cracking property was determined with the indirect tensile strength test at low temperatures. The moisture stability property was identified with the immersed Marshall test and the freeze-thaw cycles conditioned indirect tensile strength test. Based on the test results, the addition of fly ash and mineral filler remarkably increased the ǀG*ǀ of the asphalt mortar. The δ of asphalt decreased as the dosage of fly ash and mineral filler increased. The addition of fly ash and mineral filler degraded the low temperature characteristics of the mortar. Fly ash improved the high temperature characteristics of the asphalt mixture. The asphalt mixture with MSWI fly ash was more susceptible to thermal cracking than the control sample. The addition of fly ash weakened the moisture stability of the asphalt mixture. In order to guarantee the low temperature characteristics and the moisture susceptibility of the asphalt mixture, the fly ash replacement ratio was recommended to be set around 25%. With proper mixture design and fly ash dosage, the asphalt mixture would have adequate performance, as well as reduced environmental impact.  相似文献   
8.
Limited research has focused on the effect of high temperatures on the textile-reinforced mortar (TRM)-to-masonry bond. In this study, masonry prisms that were furnished with double-layered TRM strips were tested under shear bond conditions after their exposure to 200 °C and 400 °C for 1 h using the single-lap/single-prism setup. A total of four TRM systems were applied sharing the same type of textile –a dry AR glass fiber one– and different matrices: two cementitious matrices, namely a normal-weight (TRCNM) and a lightweight (TRCLM) one, and two counterpart alkali-activated matrices (TRAANM and TRAALM) based on metakaolin and fly ash. Specimens’ exposure to elevated temperatures did not alter their failure mode which was due to the sleeve fibers’ rupture along with core fibers’ slippage from the mortar. The residual bond capacity of the TRM systems decreases almost linearly with increasing exposure temperature. The alkali-activated textile reinforced mortars outperformed their cement-based counterparts in terms of bond strength at every temperature. All systems retained close to 50% of their original shear bond strength after heating at 400 °C. Per the type of binder, lightweight matrices resulted in either comparable (cement-based systems) or better (alkali-activated systems) heat protection at the TRM/masonry interface.  相似文献   
9.
Setting times, as the early-age properties of cement-based materials, are important properties to ensure the quality and long-term performance of engineering structures. To determine the initial and final setting times of cementitious materials, the compressive wave velocity and shear wave velocity of six early-age mortar samples were monitored. Their time evolution curves of Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio were then calculated and analyzed. The signature times of the derivatives of the Poisson’s ratio evolution curves correlate well with the initial and final setting times, and the remarkably high coefficient of determination values relative to the data from this study are higher than those presented in the current literature. The proposed derivative method on the Poisson’s ratio evolution curve is as good as the derivative methods from vs. evolution curves used by prior studies for the estimation of both the initial and final setting times of the early-age properties of cement-based materials. The formation and subsequent disappearance of ettringite of low Poisson’s ratio were postulated to cause the initial dip in the Poisson’s ratio evolution curves.  相似文献   
10.
The objective of this research was to study the effect of an optimal mechanical treatment method to reduce the mortar adhered on recycled aggregates (RCA) on the long-term mechanical properties and durability of concretes containing RCA at different replacement levels. It was found that concretes incorporating treated RCA exhibited sharper and more significant increase on 90- and 365-day compressive strengths than any other investigated mixture. The same mixtures also benefitted from a ‘shrinkage-controlling’ effect, where strains and mass losses were reduced by almost 15% and 10%, respectively, compared to the reference concrete. While sulfate resistance and carbonation resistance are predominantly defined by the hydration products available within the cement paste and not to a large extent by the aggregate type and quality, the incorporation of either treated or untreated RCA in concrete did not appear to expose RACs to significant durability threats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号