首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   7篇
  国内免费   2篇
儿科学   1篇
基础医学   9篇
口腔科学   1篇
临床医学   3篇
内科学   64篇
皮肤病学   2篇
神经病学   7篇
特种医学   4篇
外科学   1篇
综合类   9篇
预防医学   25篇
眼科学   1篇
药学   32篇
中国医学   5篇
  2022年   8篇
  2021年   17篇
  2020年   4篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   11篇
  2014年   9篇
  2013年   14篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   10篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有164条查询结果,搜索用时 31 毫秒
1.
2.
The synthesis of a 11C‐labelled methyl stannane, (5‐[11C]methyl‐1‐aza‐5‐stanna‐bicyclo[3.3.3]undecane ( 2 )), and its use in palladium‐mediated Stille reactions to form [11C]C–C bonds are described. Stannane 2 was synthesized from iodo[11C]methane, 5‐chloro‐1‐aza‐5‐stanna‐bicyclo[3.3.3]undecane 1 and butyl lithium in 20–90% decay‐corrected radiochemical yield starting from iodo[11C]methane. Subsequent reaction with a series of substituted aryl and vinyl halides produced the corresponding [11C]methylated products 3–5 in up to 90% decay‐corrected radiochemical yield from the crude 2 . The total synthesis time, including purification, was 25–30 min from end of radionuclide production. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
The specific activities for a series of S‐35 tracers were found to vary from the decay‐corrected specific activity of the labeled reagent. If not known before the stock solution preparation and binding assay, this variation would have resulted in performing the assay at approximately two to three times over the targeted concentration, thereby leading to considerable error in the calculated binding and related conclusions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
The East Siberian Arctic Shelf holds large amounts of inundated carbon and methane (CH4). Holocene warming by overlying seawater, recently fortified by anthropogenic warming, has caused thawing of the underlying subsea permafrost. Despite extensive observations of elevated seawater CH4 in the past decades, relative contributions from different subsea compartments such as early diagenesis, subsea permafrost, methane hydrates, and underlying thermogenic/ free gas to these methane releases remain elusive. Dissolved methane concentrations observed in the Laptev Sea ranged from 3 to 1,500 nM (median 151 nM; oversaturation by ∼3,800%). Methane stable isotopic composition showed strong vertical and horizontal gradients with source signatures for two seepage areas of δ13C-CH4 = (−42.6 ± 0.5)/(−55.0 ± 0.5) ‰ and δD-CH4 = (−136.8 ± 8.0)/(−158.1 ± 5.5) ‰, suggesting a thermogenic/natural gas source. Increasingly enriched δ13C-CH4 and δD-CH4 at distance from the seeps indicated methane oxidation. The Δ14C-CH4 signal was strongly depleted (i.e., old) near the seeps (−993 ± 19/−1050 ± 89‰). Hence, all three isotope systems are consistent with methane release from an old, deep, and likely thermogenic pool to the outer Laptev Sea. This knowledge of what subsea sources are contributing to the observed methane release is a prerequisite to predictions on how these emissions will increase over coming decades and centuries.

The East Siberian Arctic Shelf (ESAS) is the world’s largest and shallowest shelf sea system, formed through inundation of northeast Siberia during sea level transgression in the early Holocene. The ESAS holds substantial but poorly constrained amounts of organic carbon and methane (CH4). These carbon/methane stores are contained in unknown partitions as gas hydrates, unfrozen sediment, subsea permafrost, gas pockets within and below the subsea permafrost, and as underlying thermogenic gas (13). Methane release to the atmosphere from these compartments could potentially have significant effects on the global climate (4, 5), yet there are large uncertainties regarding the size and the vulnerability toward remobilization of these inaccessible and elusive subsea carbon/methane pools. Conceptual development and modeling have predicted that warming of the ESAS system by a combination of geothermal heat and climate-driven Holocene heat flux from overlying seawater, recently further enhanced by Anthropocene warming, may lead to thawing of subsea permafrost (6, 7). Subsea permafrost drilling in the Laptev Sea, in part at the same sites as 30 y ago, has recently confirmed that the subsea permafrost has indeed come near the point of thawing (8). In addition to mobilization of the carbon/methane stored within the subsea permafrost, its degradation can also lead to the formation of pathways for gaseous methane from underlying reservoirs, allowing further methane release to the overlying water column (3, 9).Near-annual ship-based expeditions to the ESAS over the past two decades have documented widespread seep locations with extensive methane releases to the water column (3, 10). Methane levels are often found to be 10 to 100 times higher than the atmospheric equilibrium and are particularly elevated in areas of strong ebullition from subsea gas seeps (“methane hotspots”). Similarly, elevated dissolved methane concentrations in bottom waters appear to be spatially related to the thermal state of subsea permafrost as deduced from modeling results and/or geophysical surveys (7, 9). Currently, we lack critical knowledge on the quantitative or even relative contributions of the different subsea pools to the observed methane release, a prerequisite for robust predictions on how these releases will develop. An important distinction needs to be made between pools that release methane gradually, such as methane produced microbially in shallow sediments during early diagenesis or in thawing subsea permafrost, versus pools with preformed methane that may release more abruptly once pathways are available, such as from disintegrating methane hydrates and pools of thermogenic (natural) gas below the subsea permafrost. Multidimensional isotope analysis offers a useful means to disentangle the relative importance of these different subsea sources of methane to the ESAS: Stable isotope data (δ13C-CH4 and δD-CH4) provide useful information on methane formation and removal pathways, and the radiocarbon content of methane14C-CH4) helps to determine the age and methane source reservoir (see SI Appendix, text S1 for details on these isotope systematics and typical isotopic signatures for the ESAS subsea system).Here, we present triple-isotope–based source apportionment of methane conducted as part of the Swedish–Russian–US investigation of carbon–climate–cryosphere interactions in the East Siberian Arctic Ocean (SWERUS-C3) program. To this end, the distribution of dissolved methane, its stable carbon and hydrogen isotope composition, as well as natural radiocarbon abundance signature, were investigated with a focus on the isotopic fingerprint of methane escaping the seabed to pinpoint the subsea sources of elevated methane in the outer Laptev Sea.  相似文献   
5.
Since the metabolic activity of the colonic flora plays a definite role in colon cancer and an increased incidence of this disease is reported after cholecystectomy, we studied the metabolic activity of the colonic flora in a group of postcholecystectomy patients and matched controls by measuring, as representative end products of the bacterial metabolism, their fecal bile acids (BA), fecal 3-methylindole (SK) and indole (IN), and respiratory methane and hydrogen. Patients had significantly higher SK and lower IN, and, among BA, higher lithocholic (LCA) and chenodeoxycholic acid concentrations and LCA/deoxycholic acid ratio in the stools than controls. Similar differences from controls were reported for colon cancer. Comparable bacterial metabolic activities are thus operative in the large bowel of postcholecystectomized and colon cancer patients. This supports the biological plausibility of the association of cholecystectomy and colon cancer.  相似文献   
6.
This article presents research results into the application of an artificial neural network (ANN) to determine coal’s sorption parameters, such as the maximal sorption capacity and effective diffusion coefficient. Determining these parameters is currently time-consuming, and requires specialized and expensive equipment. The work was conducted with the use of feed-forward back-propagation networks (FNNs); it was aimed at estimating the values of the aforementioned parameters from information obtained through technical and densitometric analyses, as well as knowledge of the petrographic composition of the examined coal samples. Analyses showed significant compatibility between the values of the analyzed sorption parameters obtained with regressive neural models and the values of parameters determined with the gravimetric method using a sorption analyzer (prediction error for the best match was 6.1% and 0.2% for the effective diffusion coefficient and maximal sorption capacity, respectively). The established determination coefficients (0.982, 0.999) and the values of standard deviation ratios (below 0.1 in each case) confirmed very high prediction capacities of the adopted neural models. The research showed the great potential of the proposed method to describe the sorption properties of coal as a material that is a natural sorbent for methane and carbon dioxide.  相似文献   
7.

Introduction

Downregulation of calsequestrin (CSQ), a major Ca2 + storage protein, may contribute significantly to the hyperactivity of internal Ca2 + ([Ca2 +]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca2 + signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca2 + influx in diabetic platelets.

Materials and methods

Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca2 +]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting.

Results

During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca2 +]i and ADP-induced Ca2 + release were progressively altered in diabetic platelets, while the elevated Ca2 + influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca2 + channel blocker, almost completely abolished ADP-induced Ca2 + influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na+/Ca2 + exchange induced much slower Ca2 + extrusion and more Ca2 + influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca2 +-ATPase inhibition, ionomycin caused greater Ca2 + mobilization and Ca2 + influx in diabetic platelets than in normal platelets.

Conclusions

These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca2 + homeostasis, insufficient Na+/Ca2 + exchange also contributes, at least in part, to the hyperactive Ca2 + response to stimulation in diabetic platelets.  相似文献   
8.
朱凯敏  沈美华  汪承炜  高静  陈焱  杨涛 《武警医学》2019,30(10):857-860
 目的 在肝缺血再灌注小鼠模型中研究甲烷对肝线粒体的影响。方法 将C57小鼠18只随机分为空白对照组(SHAM组)、缺血再灌注组(IR组)和甲烷盐水治疗组(IR+CH4组),每组6只,采用70%肝缺血再灌注模型,IR+CH4组再灌注开始前予甲烷生理盐水10 ml/kg腹腔内注射,留取标本检测氧化、抗氧化、线粒体相关指标。结果 与IR组相比,IR+CH4降低了ROS水平(t=3.154,P=0.0083)及MDA(t=3.738, P=0.028)水平,提高了GSH(t=2.687, P=0.0177)及SOD(t=3.480, P=0.0037)水平;采用Westen blot 检测蛋白的表达,与对照组相比,IR组线粒体融合蛋白Mfn1(q=7.57,P<0.05)和OPA1(q=6.41,P<0.05)表达减少,分裂蛋白DLP1(q=3.718,P<0.05)表达增加;与IR组相比,IR+CH4组融合蛋白Mfn1(q=5.277, P<0.05)增加,分裂蛋白DLP1(q=6.700,P<0.05)表达下降;IR组PINK1(q=4.606, P<0.05)表达上调,IR+CH4组PINK1(q=3.922, P<0.05)表达下降。结论 甲烷生理盐水可降低氧化应激,提高机体抗氧化能力,促进线粒体融合,减少分裂,促进线粒体功能的恢复。  相似文献   
9.
Carbon dioxide (CO2) supersaturation in lakes and rivers worldwide is commonly attributed to terrestrial–aquatic transfers of organic and inorganic carbon (C) and subsequent, in situ aerobic respiration. Methane (CH4) production and oxidation also contribute CO2 to freshwaters, yet this remains largely unquantified. Flood pulse lakes and rivers in the tropics are hypothesized to receive large inputs of dissolved CO2 and CH4 from floodplains characterized by hypoxia and reducing conditions. We measured stable C isotopes of CO2 and CH4, aerobic respiration, and CH4 production and oxidation during two flood stages in Tonle Sap Lake (Cambodia) to determine whether dissolved CO2 in this tropical flood pulse ecosystem has a methanogenic origin. Mean CO2 supersaturation of 11,000 ± 9,000 μatm could not be explained by aerobic respiration alone. 13C depletion of dissolved CO2 relative to other sources of organic and inorganic C, together with corresponding 13C enrichment of CH4, suggested extensive CH4 oxidation. A stable isotope-mixing model shows that the oxidation of 13C depleted CH4 to CO2 contributes between 47 and 67% of dissolved CO2 in Tonle Sap Lake. 13C depletion of dissolved CO2 was correlated to independently measured rates of CH4 production and oxidation within the water column and underlying lake sediments. However, mass balance indicates that most of this CH4 production and oxidation occurs elsewhere, within inundated soils and other floodplain habitats. Seasonal inundation of floodplains is a common feature of tropical freshwaters, where high reported CO2 supersaturation and atmospheric emissions may be explained in part by coupled CH4 production and oxidation.

Globally, most lakes and rivers are supersaturated with dissolved carbon dioxide (CO2) relative to the atmosphere, highlighting their outsized role in transferring and transforming terrestrial carbon (C) (13). Terrestrial–aquatic transfers of C can include CO2 dissolved in terrestrial ground and surface waters (36), dissolved inorganic carbon (DIC) from carbonate weathering (7, 8), or organic C from various sources that is subsequently respired in lakes and rivers (9, 10). Initially, oceanic export was thought to be the only fate for terrestrial–aquatic transfers of C, but a growing body of research on sediment burial of organic C and CO2 emissions from freshwaters prompted the “active pipe” revision to this initial set of assumptions (11). Although freshwaters are now recognized as focal points for transferring and transforming C on the landscape, most of this research has been conducted within temperate freshwaters (2, 11, 12). Few studies focus on the mechanisms of CO2 supersaturation in tropical lakes and rivers, with most conducted in just one watershed, the Amazon (4, 1315).CO2 supersaturation within tropical freshwaters is likely influenced by their unique flood pulse hydrology. The canonical flood pulse concept hypothesizes that annual flooding of riparian land will lead to organic C mobilization and respiration (16). Partial pressures of CO2 (pCO2) have been measured in excess of 44,000 μatm in the Amazon River (13), 16,000 μatm in the Congo River (17), and 12,000 μatm in the Lukulu River (17). Richey et al. (13), Borges et al. (18), and Zuidgeest et al. (17) have each shown that that riverine pCO2 scales with the amount of land flooded in these watersheds. Yet it was only recently that Abril and Borges (19) proposed the importance of flooded land to the “active pipe.” These authors differentiate uplands that unidirectionally drain water downhill (via ground and surface water) from floodplains that bidirectionally exchange water with lakes and rivers (19). They conceptualize how floodplains combine high hydrologic connectivity, high rates of primary production, and high rates of respiration to transfer relatively large amounts of C to tropical freshwaters (19).Methanogenesis inevitably results on floodplains after dissolved oxygen (O2) and other electron acceptors for anaerobic respiration such as iron and sulfate are consumed (16, 19). Horizontal gradients in dissolved O2 and reducing conditions have been observed extending from the center of lakes and rivers through their floodplains in the Mekong (20, 21), Congo (22), Pantanal (23), and Amazon watersheds (4). CH4 production and oxidation occur along such redox gradients (4, 16, 19, 23). CH4 is produced by acetate fermentation (Eq. 1) and carbonate reduction (Eq. 2) within freshwaters (24, 25). CH4 production coupled with aerobic oxidation results in CO2 (Eq. 3 and ref. 25), yet no studies have quantified the relative contribution of coupled CH4 production and oxidation to CO2 supersaturation within tropical freshwaters.CH3COOHCO2+CH4,[1]CO2+8H++8eCH4+2H2O,[2]CH4+2O2CO2+2H2O.[3]The relative contribution of coupled CH4 production and oxidation to CO2 supersaturation within tropical freshwaters can be traced with stable C isotopes of CO2 and CH4. Methanogenesis results in CH4 that is depleted in 13C (δ13C = −65 to −50‰ from acetate fermentation and −110 to −60‰ from carbonate reduction) compared to other potential sources of organic and inorganic C (δ13C = −37 to −7.7‰; see Materials and Methods) (2426). The oxidation of this 13C-depleted CH4 results in 13C-depleted CO2 (2426). At the same time, CH4 oxidation enriches the 13C/12C of residual CH4 as bacteria and archaea preferentially oxidize 12C-CH4 (25). This means that the 13C/12C of CO2 and CH4 can serve as powerful tools to determine the source of CO2 supersaturation within freshwaters.Tonle Sap Lake (TSL) is Southeast Asia’s largest lake and an understudied flood pulse ecosystem that supports a regionally important fishery (21, 22, 27). Each May through October, monsoonal rains and Himalayan snowmelt increase discharge in the Mekong River and cause one of its tributaries, the Tonle Sap River, to reverse course from southeast to northwest (21). During this course reversal, the Tonle Sap River floods TSL. The TSL flood pulse increases lake volume from 1.6 to 60 km3 and inundates 12,000 km2 of floodplain for 3 to 6 mo per year (21, 27). Holtgrieve et al. (22) have shown that aerobic respiration is consistently greater than primary production in TSL (i.e., net heterotrophy), with the expectation of consistent CO2 supersaturation. But, the partial pressures, C isotopic compositions, and ultimately the source of dissolved CO2 in TSL remain unquantified.To quantify CO2 supersaturation and its origins in TSL, we measured the partial pressures of CO2 and CH4 and compared their C isotopic composition to other potential sources of organic and inorganic C. We carried out these measurements in distinct lake environments during the high-water and falling-water stages of the flood pulse, hypothesizing that CH4 production and oxidation on the TSL floodplain would support CO2 supersaturation during the high-water stage. We found that coupled CH4 production and oxidation account for a nontrivial proportion of the total dissolved CO2 in all TSL environments and during both flood stages, showing that anaerobic degradation of organic C at aquatic–terrestrial transitions can support CO2 supersaturation within tropical freshwaters.  相似文献   
10.
三联式沼气池结合人群化疗控制血吸虫病效益评估   总被引:1,自引:0,他引:1  
目的了解湖沼垸内流行区建沼气池、改厕、改圈、改厨(三联通)和人群化疗措施对控制血吸虫病传播的效果。方法在龙湾镇重疫区选择未控地区郑家湖村为试区,进行三联式沼气池现场调查,检测构筑物指标,总体合格率和寄生虫卵死亡率、大肠菌群值、氯氮及综合治理措施后疫情变化。结果郑家湖沼气池属混凝土现浇园柱型水压式沼气池,总体合体率为95.5%;出料口粪大肠菌值由进料口4×10^-5~4×10^-7至出料口4×10^-3~4×10^-5,氨氮有所提高,保氮率为96.81%;活螺密度及钉螺感染率分别下降42.86%和66.70%;人群感染率下降36.88%、耕牛感染率下降100%。结论三联式沼气池结合人群化疗措施的实施,不仅可以有效控制血吸虫病传播,而且有显著的经济和社会效益。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号