首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   76篇
  国内免费   20篇
耳鼻咽喉   2篇
儿科学   3篇
妇产科学   2篇
基础医学   191篇
口腔科学   2篇
临床医学   61篇
内科学   44篇
神经病学   611篇
特种医学   11篇
外科学   19篇
综合类   29篇
预防医学   9篇
眼科学   2篇
药学   74篇
中国医学   8篇
肿瘤学   1篇
  2023年   12篇
  2022年   15篇
  2021年   42篇
  2020年   41篇
  2019年   40篇
  2018年   39篇
  2017年   33篇
  2016年   35篇
  2015年   22篇
  2014年   48篇
  2013年   56篇
  2012年   37篇
  2011年   56篇
  2010年   42篇
  2009年   41篇
  2008年   46篇
  2007年   42篇
  2006年   42篇
  2005年   35篇
  2004年   27篇
  2003年   32篇
  2002年   33篇
  2001年   20篇
  2000年   15篇
  1999年   10篇
  1998年   18篇
  1997年   11篇
  1996年   17篇
  1995年   10篇
  1994年   13篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1990年   7篇
  1989年   6篇
  1988年   9篇
  1987年   7篇
  1986年   11篇
  1985年   15篇
  1984年   10篇
  1983年   3篇
  1982年   7篇
  1981年   15篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
排序方式: 共有1069条查询结果,搜索用时 15 毫秒
1.
《Clinical neurophysiology》2021,132(9):2003-2011
ObjectiveA large N20 and P25 of the median nerve somatosensory evoked potential (SEP) predicts short survival in amyotrophic lateral sclerosis (ALS). We investigated whether high frequency oscillations (HFOs) over N20 are enlarged and associated with survival in ALS.MethodsA total of 145 patients with ALS and 57 healthy subjects were studied. We recorded the median nerve SEP and measured the onset-to-peak amplitude of N20 (N20o-p), and peak-to-peak amplitude between N20 and P25 (N20p-P25p). We obtained early and late HFO potentials by filtering SEP between 500 and 1 kHz, and measured the peak-to-peak amplitude. We followed up patients until endpoints (death or tracheostomy) and analyzed the relationship between SEP or HFO amplitudes and survival using a Cox analysis.ResultsPatients showed larger N20o-p, N20p-P25p, and early and late HFO amplitudes than the control values. N20p-P25p was associated with survival periods (p = 0.0004), while early and late HFO amplitudes showed no significant association with survival (p = 0.4307, and p = 0.6858, respectively).ConclusionsThe HFO amplitude in ALS is increased, but does not predict survival.SignificanceThe enlarged HFOs in ALS might be a compensatory phenomenon to the hyperexcitability of the sensory cortex pyramidal neurons.  相似文献   
2.
Transcranial magnetic stimulation (TMS) may offer a reliable means to characterize significant pathophysiologic and neurochemical aspects of restless legs syndrome (RLS). Namely, TMS has revealed specific patterns of changes in cortical excitability and plasticity, in particular dysfunctional inhibitory mechanisms and sensorimotor integration, which are thought to be part of the pathophysiological mechanisms of RLS rather than reflect a non-specific consequence of sleep architecture alteration.If delivered repetitively, TMS is able to transiently modulate the neural activity of the stimulated and connected areas. Some studies have begun to therapeutically use repetitive TMS (rTMS) to improve sensory and motor disturbances in RLS. High-frequency rTMS applied over the primary motor cortex or the supplementary motor cortex, as well as low-frequency rTMS over the primary somatosensory cortex, seem to have transient beneficial effects. However, further studies with larger patient samples, repeated sessions, an optimized rTMS setup, and clinical follow-up are needed in order to corroborate preliminary results.Thus, we performed a systematic search of all the studies that have used TMS and rTMS techniques in patients with RLS.  相似文献   
3.
《药学学报(英文版)》2020,10(9):1634-1645
Systematic administration of anti-inflammatory cytokine interleukin 4 (IL-4) has been shown to improve recovery after cerebral ischemic stroke. However, whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown. Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia–reperfusion (I/R) injury. In multi-electrode array (MEA) recordings, IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons. IL-4 mRNA and protein expressions are upregulated after I/R injury. Genetic deletion of Il-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation (OGD) injury in cortical neurons. Conversely, supplemental IL-4 protects Il-4−/− cortical neurons against OGD injury. Mechanistically, cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4−/− mice. Furthermore, upregulation of Nav1.1 channel, and downregulations of KCa3.1 channel and α6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4−/− mice. Taken together, our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury, thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.  相似文献   
4.
5.
Persistent developmental stuttering (PDS) shares clinical features with task-specific dystonias. In these dystonias, intracortical inhibition is abnormally weak. We therefore sought to determine intracortical inhibition and intracortical facilitation in PDS. In 18 subjects with PDS since childhood (mean age, 39.4 [SD 13.0] years) and 18 speech-fluent controls (43.6 [14.3] years), we investigated resting and active motor thresholds as well as intracortical inhibition and facilitation of the optimal representation of the abductor digiti minimi of the dominant hand using transcranial magnetic stimulation. In PDS, the resting and active motor thresholds were increased, whereas intracortical inhibition and facilitation were normal. Normal intracortical excitability makes a pathophysiological analogy between focal dystonia and PDS less likely. The enhanced motor threshold suggests reduced motor cortical neuronal membrane excitability in PDS.  相似文献   
6.
Fast and slow twitch muscle fibers have distinct contractile properties. Here we determined that membrane excitability also varies with fiber type. Na+ currents (INA) were studied with the loose-patch voltage clamp technique on 29 histochemically classified human intercostal skeletal muscle fibers at the endplate border and <200 μm from the endplate (extrajunctional). Fast and slow twitch fibers showed slow inactivation of endplate border and extrajunctional INA and had increased INA at the endplate border compared to extrajunctional membrane. The voltage dependencies of INA were similar on the endplate border and extrajunctional membrane, which suggests thatboth regions have physiclogically similar channels. Fast twitch fibers had larger INA on the endplate border and extrajunctional membrane and manifest fast and slow inactivation of INA at more negative potentials than slow twitch fibers. For normal muscle, the differences between INA on fast and slow twitch fibers might: (1) enable fast twitch fibers to operate at high firing frequencies for brief periods; and (2) enable slow twitch fibers to operate at low firing frequencies for prolonged times. Disorders of skeletal membrane excitability, such as the periodic paralyses and myotonias, may impact fast and slow twitch fibers differently due to the distinctive Na+ channel properties of each fiber type. © 1993 John Wiley & Sons, Inc.  相似文献   
7.
We investigated the neurophysiological and clinical effects of repetitive magnetic stimulation (rTMS) delivered to the cortical motor areas in healthy subjects and patients with Parkinson's disease. rTMS was delivered with a high speed magnetic stimulator (Cadwell, Kennewick, WA) through a figure-eight coil centred on the primary motor area at a stimulus intensity of 120% motor threshold. Trains of 10 stimuli were delivered at frequencies of 5 Hz while subjects were at rest and during a voluntary contraction of the contralateral first dorsal interosseous muscle. In normal subjects at rest, the muscle evoked responses (MEPs) to each stimulus in a train of magnetic stimuli progressively increased in size during the train. rTMS left the MEPs unchanged in patients off therapy and had a small facilitatory effect in those on therapy. In normal subjects and patients, 5-Hz rTMS trains delivered during a voluntary contraction of the target muscle left the MEP unchanged in size. MEPs were followed by a silent period that increased in duration during the course of the train. The silent period duration increased to a similar extent in patients and controls. The reduced rTMS-induced facilitation of MEPs in patients with Parkinson's disease reflects a decreased facilitation of the excitatory cells in the cortical motor areas.  相似文献   
8.
In 6 patients with Parkinson's disease (PD) and 6 age-matched controls, transcranial magnetic stimulation was applied at 56 regions over the motor cortex and premotor cortex of each hemisphere, with the first dorsal interosseous (FDI) muscle of both hands activated at 15% maximum voluntary contraction during stimulation. For each site, motor evoked potential (MEP) landmarks were recovered, including MEP amplitude, MEP onset latency, and silent period duration. Scaled MEP amplitudes were used to construct individual cortical maps of the FDI muscles. The maps revealed an anterior displacement of the muscle representation in PD patients. This anterior shift over motor cortical areas may reflect increased contributions of corticocortical connections between motor cortex and premotor cortical areas, possibly enhanced by the visual feedback aspect of the task. These alterations may reflect adaptations to the impairments in striatocortical circuits in PD.  相似文献   
9.
Spinal cord injury (SCI) produces an increase in extracellular excitatory amino acid (EAA) concentrations that results in glutamate receptor-mediated excitotoxic events. An important class of these receptors is the metabotropic glutamate receptors (mGluRs). mGluRs can activate a number of intracellular pathways that increase neuronal excitability and modulate neurotransmission. Group I mGluRs are known to modulate EAA release and the development of chronic central pain (CCP) following SCI; however, the role of group II and III mGluRs remains unclear. To begin evaluating group II and III mGluRs in SCI, we administered the specific agonists for group II, APDC, or group III, L-AP4, by interspinal injection immediately following SCI. Contusion injury was produced at spinal segment T10 with a New York University impactor (12.5-mm drop, 10-g rod 2 mm in diameter) in 30 adult male Sprague-Dawley rats (175-200 g). Evoked and spontaneous behavioral measures of CCP, locomotor recovery, changes in mGluR expression, and amount of spared tissue were examined. Neither APDC nor L-AP4 affected locomotor recovery or the development of thermal hyperalgesia; however, L-AP4 and APDC attenuated changes in mechanical thresholds and changes in exploratory behavior indicative of CCP. APDC- and L-AP4-treated groups had higher expression levels of mGluR2/3 at the epicenter of injury on post contusion day 28; however, there was no difference in the amount of spared tissue between treatment groups. These results demonstrate that treatment with agonists to group II and III mGluRs following SCI affects mechanical responses, exploratory behavior, and mGluR2/3 expression without affecting the amount of tissue spared, suggesting that the level of mGluR expression after SCI may modulate nociceptive responses.  相似文献   
10.
Inhibition and Facilitation in Cardiac Muscle. Introduction: The effects of subthreshold electrical pulses on the response to subsequent stimulation have been described previously in experimental animal studies as well as in the human heart. In addition, previous studies in cardiac Purkinje fibers have shown that diastolic excitability may decrease after activity (active inhibition) and, to a lesser extent, following subthreshold responses (electrotonic inhibition). However, such dynamic changes in excitability have not been explored in isolated ventricular muscle, and it is uncertain whether similar phenomena may play any role in the activation pal-terns associated with propagation abnormalities in the myocardium. Methods and Results: Experiments were performed in isolated sheep Purkinje fibers and papillary muscles, and in enzymatically dissociated guinea pig ventricular myocytes. In all types of preparations introduction of a conditioning subthreshold pulse between two subthreshold pulses was followed by a transient decay in excitability (electrotonic inhibition). The degree of inhibition was directly related to the amplitude and duration of the conditioning pulse and inversely related to the postconditioning interval. Yet, inhibition could be demonstrated long after (> 1 sec) the end of the conditioning pulse. Electrotonic inhibition was found at all diastolic intervals and did not depend on the presence of a previous action potential. In Purkinje fibers, conditioning action potentials led to active inhibition of subsequent responses. In contrast, in muscle cells, such action potentials had a facilitating effect (active facilitation). Electrotonic inhibition and active facilitation were observed in both sheep ventricular muscle and guinea pig ventricular myocytes. Accordingly, during repetitive stimulation with pulses of barely threshold intensity, we observed: (1) bistability (i.e., with the same stimulating parameters, stimulus: response patterns were either 1:1 or 1:0, depending on previous history), and (2) abrupt transitions between 1:1 and 1:0 (absence of intermediate wenckebach-like patterns). Simulations utilizing an ionic model of cardiac myocytes support the hypothesis that electrotonic inhibition in well-polarized ventricular muscle is the result of partial activation of Ik following subthreshold pulses. On the other hand, active facilitation may be the result of an activity-induced decrease in the conductance of IK1. Conclusion: Diastolic excitability of well-polarized ventricular myocardium may be transiently depressed following local responses and transiently enhanced following action potentials. On the other hand, diastolic excitability decreases during quiescence. Active facilitation and electrotonic inhibition may have an important role in determining the dynamics of excitation of the myocardium in the presence of propagation abnormalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号