首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
基础医学   3篇
内科学   62篇
特种医学   1篇
综合类   1篇
中国医学   2篇
  2023年   4篇
  2022年   30篇
  2021年   26篇
  2020年   2篇
  2015年   1篇
  2014年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有69条查询结果,搜索用时 20 毫秒
1.
In this article, the results of research on the metal-mineral-type abrasive wear of a wear-resistant plate made by a tubular electrode with a metallic core and an innovative chemical composition using the manual metal arc hardfacing process were presented. The properties of the new layer were compared to the results of eleven wear plates manufactured by global suppliers, including flux-cored arc welding gas-shielded (FCAW-GS, Deposition Process Reference Number: 138), flux-cored arc welding self-shielded (FCAW-SS, Deposition Process Reference Number: 114), automated hardfacing, and manual metal arc welding (MMAW, Deposition Process Reference Number: 111) hardfacing T Fe15 and T Fe16 alloys, according to EN 14700:2014. Characterization of the hardfaced layers was achieved by using hardness tests, optical microscopy, confocal microscopy, scanning electron microscopy, and EDS (Energy Dispersive Spectroscopy) and X-ray diffraction analyses. Based on wear resistance tests in laboratory conditions, in accordance with ASTM G65-00: Procedure A, and surface layer hardness tests, in accordance with PN-EN ISO 6508-1, the wear plates most suitable for use in metal-mineral conditions were chosen. The results demonstrated the high metal-mineral abrasive wear resistance of the deposit weld metal produced by the new covered tubular electrode. The tubular electrode demonstrated a high linear correlation between the surface wear resistance and the hardness of the metal matrix of the tested abrasive wear plates. In addition to hardness, size, shape, the dispersion of strengthening phases, and the base metal content, depending on hardfacing technology and technological parameters, impact wear resistance is represented by volumetric loss caused by effect-free or constrained dry abrasive medium contact. The presented results can be used in machine part material selection and wear planning for applications in inspection, conservation, and regeneration interval determination. The obtained results will be applied in a real-time wear rate prediction system based on the measurement of the working parameters.  相似文献   
2.
This Special Issue on Development of Laser Welding and Surface Treatment of Metals contains as many as twenty-two research articles mainly related to the application of lasers, but also on other welding processes that may be competitive to laser technologies under specific conditions. Despite the introduction of lasers for material processing in the 1960s, the continuous development of laser devices also leads to the development and expansion of laser technology applications. This Special Issue is a compendium of knowledge in the field of fusion welding, the manufacturing of surface layers and coatings with increased wear resistance and tribological characteristics, as well as corrosion resistance and the characterization of coatings and surface layers. The topics of the presented research articles include aspects related to laser welding (eight articles), especially technological conditions, the properties of different types of joints, and analytical and numerical aspects of modelling the laser heat sources. The second dominant issue concerns laser cladding and laser surface treatment of different ferrous and nonferrous metallic and composite materials (six articles). In addition, there are interesting results of the study of fusion welding under forced cooling of the deposit or underwater conditions (four articles), results on the characterization of wear resistance coating produced by different technologies that can be competitive for laser cladding (three articles), and an original study on local strengthening of the thin-walled structure by laser treatment (one article). This Special Issue provides very wide and valuable knowledge based on theoretical and empirical study in the field of laser and fusion welding, laser and related coating technologies, characterization of coatings, and wear phenomena.  相似文献   
3.
Fe901/Al2O3 metal matrix composite (MMC) coatings were deposited on the surface of 45 steel via electromagnetic field (EF)-assisted laser cladding technology. The influences of EF on the microstructure, phase composition, microhardness, and wear resistance of the Fe901/Al2O3 MMC coating were investigated. The generated Lorentz force (FL) and Joule heating due to the application of EF had a positive effect on wear resistance. The results showed that FL broke up the columnar dendrites. Joule heating produced more nuclei, resulting in the formation of fine columnar dendrites, equiaxed dendrites, and cells. The EF affected the content of hard phase in the coatings while it did not change the phase composition of the coating, because the coatings with and without EF assistance contained (Fe, Cr), (Fe, Cr)7C3, Fe3Al, and (Al, Fe)4Cr phases. The microhardness under 20 mT increased by 84.5 HV0.2 compared to the coating without EF due to the refinement of grains and the increased content of hard phase. Additionally, the main wear mechanism switched from adhesive wear to abrasive wear.  相似文献   
4.
采用宽带激光熔覆技术,在T i-6A l-4V合金上制备了梯度生物陶瓷复合涂层,并研究了宽带激光熔覆工艺参数对梯度生物陶瓷涂层显微组织与烧结性的影响。结果表明:当光斑尺寸D、扫描速度V不变时,随着输出功率P的增加,生物陶瓷涂层的致密度逐渐下降;随着输出功率P的增加,生物陶瓷层中的孔隙率逐渐增大。当P=2.3 KW时,生物陶瓷层中组织致密,孔隙率低(5.11%),当P=2.9 KW时,生物陶瓷涂层组织致密度差,孔隙率高达21.32%。生物陶瓷涂层显微硬度分析表明,P=2.3 KW时,显微硬度最高值约为1 100 HV。本实验条件下,宽带激光熔覆梯度生物陶瓷复合涂层的最佳工艺参数为P=2.3 KW,V=145 mm/m in,D=16mm×2mm。  相似文献   
5.
This article is the last of a series of publications included in the MDPI special edition entitled “Innovative Technologies and Materials for the Production of Mechanical, Thermal and Corrosion Wear-Resistant Surface Layers and Coatings”. Powder plasma-transferred arc welding (PPTAW) was used to surface metal matrix composite (MMC) layers using a mixture of cobalt (Co3) and nickel (Ni3) alloy powders. These powders contained different proportions and types of hard reinforcing phases in the form of ceramic carbides (TiC and WC-W2C), titanium diboride (TiB2), and of tungsten-coated synthetic polycrystalline diamond (PD-W). The resistance of the composite layers to cracking under the influence of dynamic loading was determined using Charpy hammer impact tests. The results showed that the various interactions between the ceramic particles and the metal matrix significantly affected the formation process and porosity of the composite surfacing welds on the AISI 4715 low-alloy structural steel substrate. They also affected the distribution and proportion of reinforcing-phase particles in the matrix. The size, shape, and type of the ceramic reinforcement particles and the surfacing weld density significantly impacted the brittleness of the padded MMC layer. The fracture toughness increased upon decreasing the particle size of the hard reinforcing phase in the nickel alloy matrix and upon increasing the composite density. The calculated mean critical stress intensity factor KIc of the steel samples with deposited layers of cobalt alloy reinforced with TiC and PD-W particles was 4.3 MPa⋅m12 higher than that of the nickel alloy reinforced with TiC and WC-W2C particles.  相似文献   
6.
In this study, the Ti-Al-Si + xTiC (x = 0, 2, 6, 10 wt.%) composite coatings, each with a different content of TiC were fabricated on a Ti-6Al-4V alloy by laser surface cladding. The microstructure of the prepared coatings was analyzed by the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The microhardness and the wear resistance of these coatings were also evaluated. The results show that α-Ti, Ti3Al, Ti5Si3, TiAl3, TiAl, Ti3AlC2 and TiC particles can be found in the composites. The microstructure can obviously be refined by increasing the content of TiC particles, while the microhardness increases and the coefficient of friction decreases. The Ti-Al-Si-6TiC composite shows the best wear resistance, owing to its relatively fine microstructure and high content of TiC particles. The microhardness of this coating is 5.3 times that of the substrate, while the wear rate is only 0.43 times. However, when the content of TiC was up to 10 wt.%, the original TiC could not be dissolved completely during the laser cladding process, leading to formation of cracks on the coatings.  相似文献   
7.
Direct metal deposition (DMD) can be used for the cladding of surfaces as well as repairing and additive manufacturing of parts and features. Process monitoring and control methods ensure a consistent quality during manufacturing. Monitoring by optical emission spectroscopy of the process radiation can provide information on process conditions and the deposition layer. The object of this work is to measure optical emissions from the process using a spectrometer and identify element lines within the spectra. Single spectra have been recorded from the process. Single tracks of Co-based powder (MetcoClad21) were clad on an S235 base material. The influence of varying process parameters on the incidence and intensity of element lines has been investigated. Moreover, the interactions between the laser beam, powder jet, and substrate with regard to spectral emissions have been examined individually. The results showed that element lines do not occur regularly. Therefore, single spectra are sorted into spectra including element lines (type A) and those not including element lines (type B). Furthermore, only non-ionised elements could be detected, with chromium appearing frequently. It was shown that increasing the laser power increases the incidence of type A spectra and the intensity of specific Cr I lines. Moreover, element lines only occurred frequently during the interaction of the laser beam with the melt pool of the deposition layer.  相似文献   
8.
The first study of thin-walled aluminum-alloy tubes with underwater-laser-nozzle in situ melting technology was carried out. The study mainly covered the influence of the water environment on the laser melting process, melting appearance, geometric characteristics, microstructure, regional segregation and microhardness. During the transfer of the cladding environment from air to water, the uniformity of the cladding layer became poor, but excellent metallurgical bonding was still obtained. The dilution rate (D) decreased from 0.46 to 0.33, while the shape factor (S) increased from 4.38 to 5.98. For the in-air and underwater samples, the microstructure of the melting zone (MZ) and the cladding zone (CZ) were columnar dendrites and equiaxed grains, respectively. In addition, the microstructure of the overlapping zone (OZ) was composed of columnar dendrites and equiaxed grains. The underwater average grain size was smaller than that of in-air. In addition, the water environment was beneficial for reducing the positive segregation in the columnar dendrite region. Compared with the in-air cladding sample, the precipitated phases in the OZ of the underwater cladding sample reduced. Under the combined action of grain refinement and precipitated phase reduction, the microhardness value of the underwater OZ was higher than that of the in-air OZ.  相似文献   
9.
To enhance the friction and wear properties of 40Cr steel’s surface, CoCrFeMnNi high-entropy alloy (HEA) coatings with various Ti contents were prepared using laser cladding. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phase composition, microstructure, and chemical composition of the samples. The findings demonstrated that the CoCrFeMnNiTix HEA coatings formed a single FCC phase. Fe2Ti, Ni3Ti, and Co2Ti intermetallic compounds were discovered in the coatings when the molar ratio of Ti content was greater than 0.5. The EDS findings indicated that Cr and Co/Ni/Ti were primarily enriched in the dendrite and interdendrite, respectively. Ti addition can effectively enhance the coating’s mechanical properties. The hardness test findings showed that when the molar ratio of Ti was 0.75, the coating’s microhardness was 511 HV0.5, which was 1.9 times the hardness of the 40Cr (256 HV0.5) substrate and 1.46 times the hardness of the CrCrFeMnNi HEA coating (348 HV0.5). The friction and wear findings demonstrated that the addition of Ti can substantially reduce the coating’s friction coefficient and wear rate. The coating’s wear resistance was the best when the molar ratio of Ti was 0.75, the friction coefficient was 0.296, and the wear amount was 0.001 g. SEM and 3D morphology test results demonstrated that the coating’s wear mechanism changed from adhesive wear and abrasive wear to fatigue wear and abrasive wear with the increase in Ti content.  相似文献   
10.
The fast heating and quenching of laser cladding increase the internal stresses in the cladding layer. Moreover, the quick condensation of the molten pool leads to an uneven distribution of the internal elements and coarse grains of the structure. To address the above defects and increase the molding quality of laser cladding, an electromagnetic field was introduced into the laser cladding technique, and the effects of the external assisted electromagnetic field on the mixed metal fluid in the molten pool were explored. On this basis, the action of the electromagnetic field on the flow states of the molten pool was further analyzed. The results demonstrate that after introducing electromagnetic assistance, the material flow in the molten pool accelerated as a response to the periodic changes in electromagnetic forces and the influences of the electromagnetic field on crystallization, thus refining the grains and improving the grain distribution uniformity in the cladding layer. The dendritic crystals in the cladding layer decreased, while the isometric crystals and the cellular-like dendrites increased. The element distribution in the cladding layer increased in uniformity. Additionally, this method can decrease the dilution rate of the cladding layer and improve its overall hardness. A laser-cladding test of the Ni-based powder was carried out on the AISI 1045 steel surface under the coaxial powder-feeding mode. Moreover, the influences of the electromagnetic field on the microstructure of the laser-cladding layer were compared, and the causes of the changes were disclosed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号