首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
基础医学   18篇
口腔科学   1篇
临床医学   3篇
特种医学   2篇
外科学   12篇
综合类   1篇
预防医学   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2005年   2篇
  2001年   1篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Myostatin (GDF8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show a significant increase in muscle mass and bone density compared to normal mice. In order to further define the role of myostatin in regulating bone mass we sought to determine if loss of myostatin function significantly altered the potential for osteogenic differentiation in bone marrow-derived mesenchymal stem cells in vitro and in vivo. We first examined expression of the myostatin receptor, the type IIB activin receptor (AcvrIIB), in bone marrow-derived mesenchymal stem cells (BMSCs) isolated from mouse long bones. This receptor was found to be expressed at high levels in BMSCs, and we were also able to detect AcvrIIB protein in BMSCs in situ using immunofluorescence. BMSCs isolated from myostatin-deficient mice showed increased osteogenic differentiation compared to wild-type mice; however, treatment of BMSCs from myostatin-deficient mice with recombinant myostatin did not attenuate the osteogenic differentiation of these cells. Loading of BMSCs in vitro increased the expression of osteogenic factors such as BMP-2 and IGF-1, but treatment of BMSCs with recombinant myostatin was found to decrease the expression of these factors. We investigated the effects of myostatin loss-of-function on the differentiation of BMSCs in vivo using hindlimb unloading (7-day tail suspension). Unloading caused a greater increase in marrow adipocyte number, and a greater decrease in osteoblast number, in myostatin-deficient mice than in normal mice. These data suggest that the increased osteogenic differentiation of BMSCs from mice lacking myostatin is load-dependent, and that myostatin may alter the mechanosensitivity of BMSCs by suppressing the expression of osteogenic factors during mechanical stimulation. Furthermore, although myostatin deficiency increases muscle mass and bone strength, it does not prevent muscle and bone catabolism with unloading.  相似文献   
2.
This paper presents a new neurophysiological method of evaluating the risk of progression in idiopathic scoliosis in the early stages of the disease, by investigating the unloading reflex in paraspinal muscles. The study included 394 patients with scoliosis and 70 healthy children. Latency of the unloading reflex and repeatability of the rebound and silent period were analysed for each reflex evoked. Prolonged latency and minimal number of cycles are the most important factors in the evaluation of progressive idiopathic scoliosis. The method can be used to detect progressive idiopathic scoliosis in the early stages of the disease. The high sensitivity of the method means it can be used as a basis on which to take an early decision to perform surgery.  相似文献   
3.
Unloaded inactivity induces atrophy and functional deconditioning of skeletal muscle, especially in the lower extremities. Information is scarce, however, regarding the effect of unloaded inactivity on muscle size and function about the hip. Regional bone loss has been demonstrated in hips and knees of elderly orthopaedic patients, as quantified by computerized tomography (CT). This method remains to be validated in healthy individuals rendered inactive, including real or simulated weightlessness. In this study, ten healthy males were subjected to 5 weeks of experimental bedrest and five matched individuals served as ambulatory controls. Maximum voluntary isometric hip and knee extension force were measured using the strain gauge technique. Cross-sectional area (CSA) of hip, thigh and calf muscles, and radiological density (RD) of the proximal tibial bone were measured using CT. Bedrest decreased (P < 0.05) average (SD) muscle strength by 20 (8)% in knee extension, and by 22 (12)% in hip extension. Bedrest induced atrophy (P < 0.05) of extensor muscles in the gluteal region, thigh and calf, ranging from 2 to 12%. Atrophy was more pronounced in the knee extensors [9 (4)%] and ankle plantar flexors [12 (3)%] than in the gluteal extensor muscles [2 (2)%]. Bone density of the proximal tibia decreased (P < 0.05) by 3 (2)% during bedrest. Control subjects did not show any temporal changes in muscle or bone indices (P > 0.05), when examined at similar time intervals. The present findings of a substantial loss in hip extensor strength and a smaller, yet significant atrophy of these muscles, demonstrate that hip muscle deconditioning accompanies losses in thigh and calf muscle mass after bedrest. This suggests that comprehensive quantitative studies on impaired locomotor function after inactivity should include all joints of the lower extremity. Our results also demonstrate that a decreased RD, indicating bone mineral loss, can be shown already after 5 weeks of unloaded bedrest, using a standard CT technique.  相似文献   
4.
The purpose of this study was to compare the isometric contractile properties of rat soleus motor units after 14 days of hindlimb unloading (HU) to those under control conditions. The motor units (MU) were classified using two mechanical criteria: the presence or not of a sag during unfused tetani and the value of the twitch time-to-peak (TTP). Under control conditions, the soleus muscle was composed of 85% of slow-type (sag −, TTP > 20 ms) and 15% of fast-type (sag +, TTP < 20 ms) units. Following HU, these two populations were still present and results showed: (1) large decreases in their maximal tetanic tensions (of −67% and −60% for slow- and fast-type, respectively), and (2) changes in their relative proportions, i.e. a decrease in the percentage of slow-type units and a twofold increase in the percentage of fast-type units were observed. These latter changes might be the consequence of a complete transformation of slow-towards fast-type units. A third population appeared in the HU solei, 26% of the samples, combining the presence of a sag and speed-related properties between those of slow- and fast-type units. These slow-intermediate units might come from slow units partially transformed into a faster type during HU. Thus the present study showed that unloading conditions induced a reorganisation of the soleus motor unit profile. The complete or partial transformation of the motor units could be related to the changes in the electromyographical activity of the unloaded soleus. Received: 30 June 1995/Received after revision: 12 January 1996/Accepted: 22 January 1996  相似文献   
5.
 We investigated the short-term recuperation of bone mass during skeletal reloading after a period of unloading in young rats. One hind limb of 4-week-old rats was either unloaded irreversibly by sciatic neurectomy, or unloaded reversibly by external fixation. Other animals were sham-operated. After 9 days, the fixation-unloaded limbs were reloaded for 1–3 weeks and were compared with the hind limbs of age-matched unloaded (neurectomized) and sham-operated controls. Cortical and cancellous bone mass was measured using ashing and histomorphometry. Cortical bone mass (expressed as femoral dry and ash weight and tibial cortical bone area) was reduced in both unloaded groups and was accompanied by production of hypomineralized bone, as shown by a reduction in the percent ash of the dry weight. Cancellous bone mass (expressed as bone area and surface at the tibial metaphysis) was also reduced in both unloaded groups. Cortical bone mass deficit was greater in the fixation group than in the neurectomy group. Thereafter it increased in the neurectomy group despite a normal longitudinal growth rate, but returned to age-matched values in the reloaded group by 3 weeks. The changes in tibial cancellous bone mass were more pronounced but followed a similar pattern and normalized by 2 weeks. These data demonstrate that total unloading produced by external fixation causes a greater degree of bone mass deficit than partial unloading (produced by neurectomy); the rate of bone loss during unloading in the rat hind limb is more rapid than its recovery during reloading; and cancellous bone recuperates during the reloading phase faster than does cortical bone. Received: 11 February 1997 / Accepted: 28 May 1997  相似文献   
6.

Background

Osteoarthritis affects the whole body, thus biomechanical effects on other joints should be considered. Unloading knee braces could be effective for knee osteoarthritis, but their effects on the contralateral knee and bilateral hip joints remain unknown. This study investigated the effects of bracing on the kinematics and kinetics of involved and contralateral joints during gait.

Methods

Nineteen patients with medial compartment knee osteoarthritis were analysed. Kinematics and kinetics of the knee and hip joints in frontal and sagittal planes were measured during walking without and with bracing on the more symptomatic knee.

Findings

The ipsilateral hip in the braced condition showed a lower adduction angle by an average of 2.58° (range, 1.05°–4.16°) during 1%–49% of the stance phase, and a lower abduction moment at the second peak during the stance phase than the hip in the unbraced condition (P < 0.05 and P < 0.005, respectively). With bracing, the contralateral hip showed a more marked peak extension moment and lower abduction moment at the first peak (P < 0.05), and the contralateral knee adduction angle increased by an average of 0.32° (range, 0.21°–0.45°) during 46%–55% of the stance phase (P < 0.05), compared to no bracing.

Interpretation

Unloading bracing modified the contralateral knee adduction angle pattern at a specific time point during gait. It also affected the frontal plane on the ipsilateral hip and the frontal and sagittal planes on the contralateral hip joint. Consideration should be provided to other joints when treating knee osteoarthritis.  相似文献   
7.
本文建立了肺动脉压力与容积时相关系的概念,进而分析了肺动脉压力-容积时相在不同病理条件下的变化特点。  相似文献   
8.
9.
Normal human subjects, sitting in a chair, were required to maintain stable elbow flexion against loads of 0.5 kg or 1.0 kg. Unloading was affected either passively by the experimenter, or actively with the subject's own contralateral arm. Elbow angle, force exerted by the load, and electromyographic activity (EMG) of biceps and triceps muscles of both arms were recorded and averaged. Passive unloading was followed by a reduction of biceps EMG activity, starting 50–80 ms after weight lift, and by an upward deflection of the forearm. With active unloading, however, a reduction of the biceps EMG activity slightly preceded the onset of unloading (0–30 ms). This reduction of the actively unloaded arm occurred at about the same time as the activity of the contralateral unloading arm. In this experiment, the unloaded forearm maintained an almost stable position. Thus, the anticipatory adjustment of elbow posture, observed when unloading was performed by the subject, appears to optimize limb stability during the mechanical perturbation.  相似文献   
10.
To address the question of how arm posture is controlled, we analyzed shoulder–elbow unloading responses in the horizontal plane for different directions of the initial load. The initial load, produced by a double-joint manipulandum, was suddenly diminished to 1of 12 randomly presented levels (60 to –10% of the initial load; in 6 out of 12 cases the final load direction varied by ±20°). Subjects were instructed not to intervene in response to unloading. Neither the unloading onset nor the final load level was predictable and we assumed that the responses to rapid unloading were involuntary. Unloading elicited a smooth hand movement characterized by a bell-shaped velocity profile. The changes in hand position, joint angles, and joint torques generally increased with greater amounts of unloading. For each direction of the initial load, tonic electromyographic activity of the shoulder and elbow muscles also changed, depending on the amount of unloading. The shoulder and elbow joint torques before and after unloading were a function of the difference between the actual configuration of the arm and its referent configuration (R) described by the angles at which each joint torque was zero. The R configuration changed depending on the direction of the initial load. Our electromyographic data imply that these changes result from a central modification of muscle activation thresholds. The nervous system may thus control the R configuration in a task-specific way by leaving it unchanged to generate involuntary responses to unloading or modifying it to accommodate a new load direction at the same initial position. It is concluded that the R configuration is a major variable in both intentional and involuntary control of posture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号