首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   17篇
  国内免费   2篇
儿科学   2篇
基础医学   25篇
临床医学   12篇
内科学   30篇
皮肤病学   1篇
神经病学   9篇
外科学   6篇
综合类   4篇
现状与发展   2篇
预防医学   48篇
药学   12篇
中国医学   1篇
  2023年   3篇
  2022年   6篇
  2021年   18篇
  2020年   38篇
  2019年   10篇
  2018年   5篇
  2017年   10篇
  2016年   12篇
  2015年   25篇
  2014年   17篇
  2013年   4篇
  2012年   3篇
  2009年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
1.
South Korea’s COVID-19 control strategy has been widely emulated. Korea’s ability to rapidly achieve disease control in early 2020 without a “Great Lockdown” despite its proximity to China and high population density make its achievement particularly intriguing. This paper helps explain Korea’s pre-existing capabilities which enabled the rapid and effective implementation of its COVID-19 control strategies. A systematic assessment across multiple domains demonstrates that South Korea’s advantages in controlling its epidemic are owed tremendously to legal and organizational reforms enacted after the MERS outbreak in 2015. Successful implementation of the Korean strategy required more than just a set of actions, measures and policies. It relied on a pre-existing legal framework, financing arrangements, governance and a workforce experienced in outbreak management.  相似文献   
2.
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development.  相似文献   
3.
4.
Middle East respiratory syndrome (MERS) cases continue to be reported from the Middle East. Evaluation and testing of patients under investigation (PUIs) for MERS are recommended. In 2013–2014, two imported cases were detected among 490 US PUIs. Continued awareness is needed for early case detection and implementation of infection control measures.  相似文献   
5.
During January 2013–August 2014, a total of 1,800 patients in Iran who had respiratory illness were tested for Middle East respiratory syndrome coronavirus. A cluster of 5 cases occurred in Kerman Province during May–July 2014, but virus transmission routes for some infections were unclear.  相似文献   
6.
We investigated an outbreak of Middle East respiratory syndrome (MERS) at King Fahad Medical City (KFMC), Riyadh, Saudi Arabia, during March 29–May 21, 2014. This outbreak involved 45 patients: 8 infected outside KFMC, 13 long-term patients at KFMC, 23 health care workers, and 1 who had an indeterminate source of infection. Sequences of full-length MERS coronavirus (MERS-CoV) from 10 patients and a partial sequence of MERS-CoV from another patient, when compared with other MERS-CoV sequences, demonstrated that this outbreak was part of a larger outbreak that affected multiple health care facilities in Riyadh and possibly arose from a single zoonotic transmission event that occurred in December 2013 (95% highest posterior density interval November 8, 2013–February 10, 2014). This finding suggested continued health care–associated transmission for 5 months. Molecular epidemiology documented multiple external introductions in a seemingly contiguous outbreak and helped support or refute transmission pathways suspected through epidemiologic investigation.  相似文献   
7.
We investigated the kinetics of serologic responses to Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using virus neutralization and MERS-CoV S1 IgG ELISA tests. In most patients, robust antibody responses developed by the third week of illness. Delayed antibody responses with the neutralization test were associated with more severe disease.  相似文献   
8.
As of July 15, 2015, the South Korean Ministry of Health and Welfare had reported 186 case-patients with Middle East respiratory syndrome in South Korea. For 159 case-patients with known outcomes and complete case histories, we found that older age and preexisting concurrent health conditions were risk factors for death.  相似文献   
9.
10.
BackgroundThe 2019 novel coronavirus (SARS-CoV-2) is a new human coronavirus which is spreading with epidemic features in China and other Asian countries; cases have also been reported worldwide. This novel coronavirus disease (COVID-19) is associated with a respiratory illness that may lead to severe pneumonia and acute respiratory distress syndrome (ARDS). Although related to the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), COVID-19 shows some peculiar pathogenetic, epidemiological and clinical features which to date are not completely understood.AimsTo provide a review of the differences in pathogenesis, epidemiology and clinical features of COVID-19, SARS and MERS.SourcesThe most recent literature in the English language regarding COVID-19 has been reviewed, and extracted data have been compared with the current scientific evidence about SARS and MERS epidemics.ContentCOVID-19 seems not to be very different from SARS regarding its clinical features. However, it has a fatality rate of 2.3%, lower than that of SARS (9.5%) and much lower than that of MERS (34.4%). The possibility cannot be excluded that because of the less severe clinical picture of COVID-19 it can spread in the community more easily than MERS and SARS. The actual basic reproductive number (R0) of COVID-19 (2.0–2.5) is still controversial. It is probably slightly higher than the R0 of SARS (1.7–1.9) and higher than that of MERS (<1). A gastrointestinal route of transmission for SARS-CoV-2, which has been assumed for SARS-CoV and MERS-CoV, cannot be ruled out and needs further investigation.ImplicationsThere is still much more to know about COVID-19, especially as concerns mortality and its capacity to spread on a pandemic level. Nonetheless, all of the lessons we learned in the past from the SARS and MERS epidemics are the best cultural weapons with which to face this new global threat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号