首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   58篇
  国内免费   16篇
基础医学   114篇
口腔科学   21篇
临床医学   61篇
内科学   65篇
皮肤病学   1篇
神经病学   8篇
特种医学   3篇
外科学   15篇
综合类   48篇
眼科学   2篇
药学   58篇
中国医学   4篇
肿瘤学   1篇
  2023年   3篇
  2022年   16篇
  2021年   40篇
  2020年   13篇
  2019年   19篇
  2018年   29篇
  2017年   17篇
  2016年   26篇
  2015年   23篇
  2014年   45篇
  2013年   59篇
  2012年   17篇
  2011年   25篇
  2010年   8篇
  2009年   18篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   1篇
排序方式: 共有401条查询结果,搜索用时 62 毫秒
1.
The melt agglomeration process of lactose powder with hydrogenated cottonseed oil (HCO) as the hydrophobic meltable binder was investigated by studying the physicochemical properties of molten HCO modified by sucrose stearates S170, S770 and S1570. The size, size distribution, micromeritic and adhesion properties of agglomerates as well as surface tension, contact angle, viscosity and specific volume of molten HCO, with and without sucrose stearates, were examined. The viscosity, specific volume and surface tension of molten HCO were found to be modified to varying extents by sucrose stearates which are available in different HLB values and melt properties. The growth of melt agglomerates was promoted predominantly by an increase in viscosity, an increase in specific volume or a decrease in surface tension of the molten binding liquid. The agglomerate growth propensity was higher with an increase in inter-particulate binding strength, agglomerate surface wetness and extent of agglomerate consolidation which enhanced the liquid migration from agglomerate core to periphery leading to an increased surface plasticity for coalescence. The inclusion of high concentrations of completely meltable sucrose stearate S170 greatly induced the growth of agglomerates through increased specific volume and viscosity of the molten binding liquid. On the other hand, the inclusion of incompletely meltable sucrose stearates S770 and S1570 promoted the agglomeration mainly via the reduction in surface tension of the molten binding liquid with declining agglomerate growth propensity at high sucrose stearate concentrations. In addition to being an agglomeration modifier, sucrose stearate demonstrated anti-adherent property in melt agglomeration process. The properties of molten HCO and melt agglomerates were dependent on the type and concentration of sucrose stearate added.  相似文献   
2.
Summary: In the present contribution, the electrostatic spinning or electrospinning technique was used to produce ultra‐fine polyamide‐6 (PA‐6) fibers. The effects of solution conditions on the morphological appearance and the average diameter of as‐spun fibers were investigated by optical scanning (OS) and scanning electron microscopy (SEM) techniques. It was shown that the solution properties (i.e. viscosity, surface tension and conductivity) were important factors characterizing the morphology of the fibers obtained. Among these three properties, solution viscosity was found to have the greatest effect. Solutions with high enough viscosities (viz. solutions at high concentrations) were necessary to produce fibers without beads. At a given concentration, fibers obtained from PA‐6 of higher molecular weights appeared to be larger in diameter, but it was observed that the average diameters of the fibers from PA‐6 of different molecular weights had a common relationship with the solution viscosities which could be approximated by an exponential growth equation. Raising the temperature of the solution during spinning resulted in the reduction of the fiber diameters with higher deposition rate, while mixing m‐cresol with formic acid to serve as a mixed solvent for PA‐6 caused the solutions to have higher viscosities which resulted in larger fiber diameters. Lastly, the addition of some inorganic salts resulted in an increase in the solution conductivity, which caused the fiber diameters to increase due to the large increase in the mass flow.

Average diameter of as‐spun fibers plotted as a function of the viscosity of the solutions.  相似文献   

3.
Schwann cell basal lamina is a nanometer-thin extracellular matrix layer that separates the axon-bound Schwann cells from the endoneurium of the peripheral nerve. It is implicated in the promotion of nerve regeneration after transection injury by allowing Schwann cell colonization and axonal guidance. Hence, it is desired to mimic the native basal lamina for neural tissue engineering applications. In this study, basal lamina proteins from BD Matrigel (growth factor-reduced) were extracted and electrospun to deposit nonwoven nanofiber mats. Adjustment of solute protein concentration, potential difference, air gap distance and flow rate produced a basal lamina-like construct with an average surface roughness of 23 nm and composed of 100-nm-thick irregular and relatively discontinuous fibers. Culture of embryonic chick dorsal root ganglion explants demonstrated that the fabricated nanofiber layer supported explant attachment, elongation of neurites, and migration of satellite Schwann cells in a similar fashion compared to electrospun collagen type-I fibers. Furthermore, the presence of nanorough surface featues significantly increased the neurite spreading and Schwann cell growth. Sciatic nerve segment incubation also showed that the construct is promigratory to nerve Schwann cells. Results, therefore, suggest that the synthetic basal lamina fibers can be utilized as a biomaterial for induction of peripheral nerve repair.  相似文献   
4.
ObjectivesDecellularization aims to harness the regenerative properties of native extracellular matrix. The objective of this study was to evaluate different methods of decellularization of periodontal ligament cell sheets whilst maintaining their structural and biological integrity.DesignHuman periodontal ligament cell sheets were placed onto melt electrospun polycaprolactone (PCL) membranes that reinforced the cell sheets during the various decellularization protocols. These cell sheet constructs (CSCs) were decellularized under static/perfusion conditions using a) 20 mM ammonium hydroxide (NH4OH)/Triton X-100, 0.5% v/v; and b) sodium dodecyl sulfate (SDS, 0.2% v/v), both +/− DNase besides Freeze–thaw (F/T) cycling method. CSCs were assessed using a collagen quantification assay, immunostaining and scanning electron microscopy. Residual fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed with Bio-plex assays.ResultsDNA removal without DNase was higher under static conditions. However, after DNase treatment, there were no differences between the different decellularization methods with virtually 100% DNA removal. DNA elimination in F/T was less efficient even after DNase treatment. Collagen content was preserved with all techniques, except with SDS treatment. Structural integrity was preserved after NH4OH/Triton X-100 and F/T treatment, while SDS altered the extracellular matrix structure. Growth factor amounts were reduced after decellularization with all methods, with the greatest reduction (to virtually undetectable amounts) following SDS treatment, while NH4OH/Triton X-100 and DNase treatment resulted in approximately 10% retention.ConclusionsThis study showed that treatment with NH4OH/Triton X-100 and DNase solution was the most efficient method for DNA removal and the preservation of extracellular matrix integrity and growth factors retention.  相似文献   
5.
6.
A capability for effective tissue reparation is a living requirement for all multicellular organisms. Bone exits as a precisely orchestrated balance of bioactivities of bone forming osteoblasts and bone resorbing osteoclasts. The main feature of osteoblasts is their capability to produce massive extracellular matrix enriched with calcium phosphate minerals. Hydroxyapatite and its composites represent the most common form of bone mineral providing mechanical strength and significant osteoinductive properties. Herein, hydroxyapatite and fluorapatite functionalized composite scaffolds based on electrospun polycaprolactone have been successfully fabricated. Physicochemical properties, biocompatibility and osteoinductivity of generated matrices have been validated. Both the hydroxyapatite and fluorapatite containing polycaprolactone composite scaffolds demonstrated good biocompatibility towards mesenchymal stem cells. Moreover, the presence of both hydroxyapatite and fluorapatite nanoparticles increased scaffolds’ wettability. Furthermore, incorporation of fluorapatite nanoparticles enhanced the ability of the composite scaffolds to interact and support the mesenchymal stem cells attachment to their surfaces as compared to hydroxyapatite enriched composite scaffolds. The study of osteoinductive properties showed the capacity of fluorapatite and hydroxyapatite containing composite scaffolds to potentiate the stimulation of early stages of mesenchymal stem cells’ osteoblast differentiation. Therefore, polycaprolactone based composite scaffolds functionalized with fluorapatite nanoparticles generates a promising platform for future bone tissue engineering applications.  相似文献   
7.
8.
The poor solubility and low dissolution rate in gastro-intestinal fluid, especially for class-II drugs according to Biopharmaceutics Classification System (BCS) the bioavailability enhanced by increasing the solubility and dissolution rate. A novel melt sonocrystallization technique of particle engineering to enhance solubility as well as dissolution of hydrophobic drug and to study its effect on crystal properties of drug. The present study leads to use investigate solubility of melt sonocrystallization technique to modify the undesirable properties of Rosiglitazone is antidiabetic drug in thiozolidione category with (BCS II) to forms agglomerates with number of shallow circular pits on the surface leads to increase solubility. Melt sonocrystallization process was developed for Rosiglitazone in which Rosiglitazone melt was poured in deionized water and simultaneously subjected to ultrasonic energy for 20 min at amplitude 80 %. The product obtained was evaluated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffractometry (XPRD), Fourier transformed infrared spectroscopy (FTIR), solubility and dissolution rate. The irregular agglomerates with porous surface were obtained having different crystal habit which increases solubility and dissolution rate. FTIR shows thermal behavior of untreated Rosiglitazone and treated Rosiglitazone have no significant difference low intensity peaks in XPRD of treated Rosiglitazone were noticed crystals habit changes and lattice defects during processing have causes favorable changes in the physicochemical properties of Rosiglitazone. The use of melt sonocrystallization technique is promising technique that may affords powder with improved flow as well as improved solubility and dissolution.  相似文献   
9.
Abstract

Conducting polymer-based scaffolds receive biological and electrical signals from the extracellular matrix (ECM) or peripheral cells, thereby promoting cell growth and differentiation. Chitin, a natural polymer, is widely used as a scaffold because it is biocompatible, biodegradable, and nontoxic. In this study, we used an electrospinning technique to fabricate conductive scaffolds from aligned chitin/polyaniline (Chi/PANi) nanofibers for the directional guidance of cells. Pure chitin and random and aligned Chi/PANi nanofiber scaffolds were characterized using field emission scanning electron microscope (FE-SEM) and by assessing wettability, mechanical properties, and electrical conductivity. The diameters of aligned Chi/PANi nanofibers were confirmed to be smaller than those of pure chitin and random nanofibers owing to electrostatic forces and stretching produced by rotational forces of the drum collector. The electrical conductivity of aligned Chi/PANi nanofiber scaffolds was ~91% higher than that of random nanofibers. We also studied the viability of human dermal fibroblasts (HDFs) cultured on Chi/PANi nanofiber scaffolds in vitro using a CCK-8 assay, and found that cell viability on the aligned Chi/PANi nanofiber scaffolds was ~2.1-fold higher than that on random Chi/PANi nanofiber scaffolds after 7 days of culture. Moreover, cells on aligned nanofiber scaffolds spread in the direction of the aligned nanofibers (bipolar), whereas cells on the random nanofibers showed no spreading (6 h of culture) or multipolar patterns (7 days of culture). These results suggest that aligned Chi/PANi nanofiber scaffolds with conductivity exert effects that could improve survival and proliferation of cells with directionality.  相似文献   
10.
Abstract

Heparins are capable of improving blood compatibility, enhancing HUVEC viability, while inhibiting HUASMC proliferation. Combination of biodegradable poly(ε-caprolactone) (PCL) with keratin and heparins would provide an anticoagulant and endothelialization supporting environment for vascular tissue engineering. Herein, PCL and keratin were first coelectrospun and then covalently conjugated with heparins. The resulting mats were surface-characterized by ATR-FTIR, SEM, WCA, and XPS. Cell viability data showed that the heparinized PCL/keratin mats could motivate the adhesion and growth of HUVEC, while inhibit HUASMC proliferation. In addition, these mats could prolong blood clotting time and reduce platelet adhesion as well as no erythrolysis. Interestingly, these mats could catalyze the NO donor in blood to release NO, which could enhance endothelial cell growth, while decrease smooth muscle cell proliferation and platelet adhesion. In summary, the heparinized mats would be a good candidate as a scaffold for vascular tissue engineering. This study is novel in that we prepared a type of heparinized tissue scaffold that could catalyze the NO donor to release NO to regulate endothelialization without angiogenesis and thrombus formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号