首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
  国内免费   2篇
基础医学   37篇
口腔科学   3篇
内科学   1篇
皮肤病学   1篇
外科学   24篇
综合类   3篇
眼科学   2篇
药学   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   13篇
  2014年   15篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
《The ocular surface》2020,18(4):901-911
PurposeThe long-term success of visual rehabilitation in patients with severe conjunctival scarring is reliant on the reconstruction of the conjunctiva with a suitable substitute. The purpose of this study is the development and investigation of a re-epithelialized conjunctival substitute based on porcine decellularized conjunctiva (PDC).MethodsPDC was re-epithelialized either with pre-expanded human conjunctival epithelial cells (PDC + HCEC) or with a human conjunctival explant placed directly on PDC (PDC + HCEx). Histology and immunohistochemistry were performed to evaluate epithelial thickness, proliferation (Ki67), apoptosis (Caspase 3), goblet cells (MUC5AC), and progenitor cells (CK15, ΔNp63, ABCG2). The superior construct (PDC + HCEx) was transplanted into a conjunctival defect of a rabbit (n = 6). Lissamine green staining verified the epithelialization in vivo. Orbital tissue was exenterated on day 10 and processed for histological and immunohistochemical analysis to examine the engrafted PDC + HCEx. A human-specific antibody was used to detect the transplanted cells.ResultsFrom day-14 in vitro onward, a significantly thicker epithelium and greater number of cells expressing Ki67, CK15, ΔNp63, and ABCG2 were noted for PDC + HCEx versus PDC + HCEC. MUC5AC-positive cells were found only in PDC + HCEx. The PDC + HCEx-grafted rabbit conjunctivas were lissamine-negative during the evaluation period, indicating epithelial integrity. Engrafted PDC + HCEx showed preserved progenitor cell properties and an increased number of goblet cells comparable to those of native conjunctiva.ConclusionPlacing and culturing a human conjunctival explant directly on PDC (PDC + HCEx) enables the generation of a stable, stratified, goblet cell-rich construct that could provide a promising alternative conjunctival substitute for patients with extensive conjunctival stem and goblet cell loss.  相似文献   
2.
一种新型的脱细胞组织工程血管支架的构建和评价   总被引:3,自引:0,他引:3  
本研究的目的是制备一种免疫原性较小、生物相容性较好、力学性能优良的组织工程血管支架。新鲜获得的犬主动脉,置于三蒸水中4℃过夜,使血管细胞由于渗透压差较大而破裂;随后经过多聚环氧化合物家族的乙二醇缩水甘油醚(EX-810)的作用。进一步促进细胞破裂的同时。对血管支架的纤维结构起交联作用;最后应用物理超声的方法清除支架内的细胞碎片残留。用这种方法处理的犬主动脉内几乎没有可见的核染,基本消除了血管支架的免疫原性。同新鲜的血管相比较。这种组织工程血管支架的各种力学指标与新鲜的犬主动脉没有显著差异。说明处理后的支架仍然保持新鲜血管的力学特征。同时它还表现出极低的细胞毒性。分别在支架上种植内皮细胞和平滑肌细胞,扫描电镜检测结果表明,两种细胞在支架上生长良好,且局部已经融合成片。 相容性  相似文献   
3.
ObjectivesDecellularization aims to harness the regenerative properties of native extracellular matrix. The objective of this study was to evaluate different methods of decellularization of periodontal ligament cell sheets whilst maintaining their structural and biological integrity.DesignHuman periodontal ligament cell sheets were placed onto melt electrospun polycaprolactone (PCL) membranes that reinforced the cell sheets during the various decellularization protocols. These cell sheet constructs (CSCs) were decellularized under static/perfusion conditions using a) 20 mM ammonium hydroxide (NH4OH)/Triton X-100, 0.5% v/v; and b) sodium dodecyl sulfate (SDS, 0.2% v/v), both +/− DNase besides Freeze–thaw (F/T) cycling method. CSCs were assessed using a collagen quantification assay, immunostaining and scanning electron microscopy. Residual fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed with Bio-plex assays.ResultsDNA removal without DNase was higher under static conditions. However, after DNase treatment, there were no differences between the different decellularization methods with virtually 100% DNA removal. DNA elimination in F/T was less efficient even after DNase treatment. Collagen content was preserved with all techniques, except with SDS treatment. Structural integrity was preserved after NH4OH/Triton X-100 and F/T treatment, while SDS altered the extracellular matrix structure. Growth factor amounts were reduced after decellularization with all methods, with the greatest reduction (to virtually undetectable amounts) following SDS treatment, while NH4OH/Triton X-100 and DNase treatment resulted in approximately 10% retention.ConclusionsThis study showed that treatment with NH4OH/Triton X-100 and DNase solution was the most efficient method for DNA removal and the preservation of extracellular matrix integrity and growth factors retention.  相似文献   
4.
肝脏替代治疗是目前终末期肝病最有效的治疗措施,而去细胞化肝脏生物支架拓宽了肝脏替代治疗的研究领域.目前普遍的支架制备过程是在一定的物理条件下,经灌注设备将化学试剂(去垢剂、消化酶等)注入肝脏自身的脉管结构中,达到去除细胞成分,保留支架内ECM和超微脉管结构的目的.再将种子细胞注入到去细胞化肝脏生物支架,获得再细胞化肝脏,模拟机体内肝脏生物环境进行体外或体内培养,观察种子细胞附着情况,检测肝脏代谢功能,评估肝脏替代效果.目前,种子细胞的选取、再细胞化流程、再细胞化肝脏移植等问题仍处于探索阶段.笔者围绕去细胞化肝脏生物支架的制备与评价、检测和应用作一综述,为进一步应用于实验研究和临床实践提供参考.  相似文献   
5.
Tissue engineering of cardiovascular structures represents a novel approach to improve clinical strategies in heart valve disease treatment. The aim of this study was to engineer decellularized atrioventricular heart valve neoscaffolds with an intact ultrastructure and to reseed them with umbilical cord‐derived endothelial cells under physiological conditions in a bioreactor environment. Mitral (n = 38) and tricuspid (n = 36) valves were harvested from 40 hearts of German Landrace swine from a selected abattoir. Decellularization of atrioventricular heart valves was achieved by a detergent‐based cell extraction protocol. Evaluation of the decellularization method was conducted with light microscopy and quantitative analysis of collagen and elastin content. The presence of residual DNA within the decellularized atrioventricular heart valves was determined with spectrophotometric quantification. The described decellularization regime produced full removal of native cells while maintaining the mechanical stability and the quantitative composition of the atrioventricular heart valve neoscaffolds. The surface of the xenogeneic matrix could be successfully reseeded with in vitro‐expanded human umbilical cord‐derived endothelial cells under physiological flow conditions. After complete decellularization with the detergent‐based protocol described here, physiological reseeding of the xenogeneic neoscaffolds resulted in the formation of a confluent layer of human umbilical cord‐derived endothelial cells. These results warrant further research toward the generation of atrioventricular heart valve neoscaffolds on the basis of decellularized xenogeneic tissue.  相似文献   
6.
目的 制备兔骨膜去细胞生物支架,为骨缺损、骨不愈的组织工程研究提供天然的生物支架材料。 方法 取健康新西兰大白兔,游离双侧胫骨近端内侧骨膜,通过物理冻融(-80℃,24h)、去污剂洗脱(triton-X 100、SDS)和酶消化(DNA酶、RNA酶)获取骨膜去细胞生物支架。通过HE染色、DAPI染色、琼脂糖电泳和基因组DNA定量分析(n=5)测定细胞结构及DNA成分残留;Masson染色和羟脯氨酸测定法(n=6)定性定量检测骨膜细胞外基质的主要成分(胶原)的保留情况;扫描电子显微镜下观察骨膜去细胞生物支架的表面微结构;CCK8法检测支架浸提液毒性;皮下包埋实验(n=4)观察该支架的免疫排斥反应。 结果 HE染色和4’,6-二脒基-2-苯基吲哚(DAPI)染色表明去细胞支架无残留细胞;琼脂糖电泳未见明显DNA条带;DNA定量检测显示组织去细胞率达95%以上;Masson染色及羟脯氨酸测定表明去细胞支架胶原成分被保留;扫描电子显微镜下细胞外基质呈现三维网状疏松结构;不同体积分数的浸提液对骨膜细胞的增殖与对照组(普通培养基)比较无明显抑制作用(P>0.05);异体皮下包埋实验显示,该去细胞支架免疫排斥反应不明显。 结论 运用物理冻融、去污剂洗脱和酶消化等方法所获取的骨膜去细胞生物支架细胞去除彻底,细胞外基质的结构及主要成分保留完好,生物相容性良好。  相似文献   
7.
《Acta histochemica》2022,124(6):151928
AimsDiabetes is a chronic disease that is associated with a decrease or disfunction of β-cell. In the present study, fabrication of bioartificial pancreas using MIN-6 β-cell line seeded in decellularized rat testicles was investigated.Main methodsIn this experimental study, the whole body of testes were decellularized and after characterization, were seeded by MIN-6 cell line. The expression of insulin-related genes and proteins including PDX-1, Glut2, Insulin, and Neurogenin-3 were evaluated. Insulin secretion was assessed under different concentrations of glucose. Seeded scaffolds with or without MIN-6 cells were transplanted to the rat's mesentery and their blood sugar and body weight were evaluated every three days for 28 days and analyzed with H&E staining.ResultsHistological assessments indicated the cells were completely removed after decellularization. The scaffold had no toxic impacts on the MIN-6 cells (P? 0.02).Insulin release in response to different concentrations of glucose in 3D culture (testis-ECM) was significantly more than the traditional 2D monolayer culture (P < 0.001). Moreover, the relative genes and proteins expression were significantly higher in the 3D culture, compared to the 2D control group. In vivo transplantation of the (testis- Extra Cellular Matrix) testis-ECM scaffolds showed appropriate positions for transplantation with angiogenesis and low infiltration of inflammatory cells. The recellularized scaffolds could drop blood sugar levels and increase the body-weight of STZ-diabetic rats (P < 0.01).SignificanceOur study clearly confirmed that ECM valuable organ scaffolds prepared by decellularization of the testicular tissue is suitable for the fabrication of bioartificial pancreas for transplantation.  相似文献   
8.
Worldwide, there is a great need of small diameter vascular grafts that can be used in human disorders such as cardiovascular and peripheral vascular disease. Until now, severe adverse reactions are caused from the use of synthetic or animal derived grafts, while the use of autologous vessels is restricted only in a small number of patients. The limited availability of the vessels might be resolved by the use of HLA-matched vascular grafts utilizing the decellularized human umbilical arteries. In this study, human umbilical arteries were decellularized and then repopulated with Mesenchymal Stem Cells. The HLA-genotype of the repopulated grafts, analyzed by Next Generation Sequencing technology, indicated their successful production. The HLA-matched vascular grafts could be generated efficiently and might be used in personalized medicine.  相似文献   
9.
Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance. With this study, we present a novel decellularization protocol for 1.5 mm thick mouse brain sections, resulting in the generation of acellular three-dimensional (3D) brain sections. Next, the obtained 3D brain sections were seeded with murine NSC expressing both the eGFP and luciferase reporter proteins (NSC-eGFP/Luc). Using real-time bioluminescence imaging, the survival and growth of seeded NSC-eGFP/Luc cells was longitudinally monitored for 1–7 weeks in culture, indicating the ability of the acellular brain sections to support sustained ex vivo growth of NSC. Next, the organization of a 3D maze-like cellular structure was examined using confocal microscopy. Moreover, under mitogenic stimuli (EGF and hFGF-2), most cells in this 3D culture retained their NSC phenotype. Concluding, we here present a novel protocol for decellularization of mouse brain sections, which subsequently support long-term 3D culture of undifferentiated NSC.  相似文献   
10.
The Andrew J. Weiland Medal is presented each year by the American Society for Surgery of the Hand and the American Foundation for Surgery of the Hand for a body of work related to hand surgery research. This essay, awarded the Weiland Medal in 2011, focuses on the clinical need for flexor tendon reconstruction and on investigations into flexor tendon biology. Reconstruction of the upper extremity is limited by 2 major problems after injury or degeneration of the flexor tendons. First, adhesions formed after flexor tendon repair can cause decreased postoperative range of motion and hand function. Second, tendon losses can result from trauma and degenerative diseases, necessitating additional tendon graft material. Tendon adhesions are even more prevalent after tendon grafting; therefore these 2 problems are interrelated and lead to considerable disability. The total costs in terms of disability and inability to return to work are enormous. In this essay, published work from the past 12 years in our basic science laboratory is summarized and presented with the common theme of using molecular techniques to understand the cellular process of flexor tendon wound healing and to create substances and materials to improve tendon repair and regeneration. These are efforts to address 2 interrelated and clinically relevant problems that all hand surgeons face in their practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号