首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
内科学   3篇
  2006年   1篇
  2003年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
BACKGROUND & AIMS: Obesity is one of the risk factors for liver fibrosis, in which plasma adiponectin, an adipocytokine, levels are decreased. Hepatic stellate cells play central roles in liver fibrosis. When they are activated, they undergo transformation to myofibroblast-like cells. Adiponectin suppresses the proliferation and migration of vascular smooth muscle cells, whose characteristics are similar to those of hepatic stellate cells. Adiponectin could have biological significances in liver fibrosis. METHODS: The role of adiponectin on liver fibrosis induced by the administration of carbon tetrachloride twice a week for 12 weeks was tested by using adiponectin-knockout mice and an adenovirus-mediated adiponectin-expression system. We also investigated the effect of adiponectin in activated hepatic stellate cells. RESULTS: When mice were administered carbon tetrachloride (300 microL/kg body weight) twice a week for 12 weeks, knockout mice showed extensive liver fibrosis with an enhanced expression of transforming growth factor-beta 1 and connective tissue growth factor compared with wild-type mice (P < 0.05). Injection of adenovirus producing adiponectin (AdADN) before carbon tetrachloride (1000 microL/kg body weight) treatment prevented liver fibrosis in wild-type mice (P < 0.001). Injection of AdADN at 6 weeks attenuated liver fibrosis even though carbon tetrachloride was given for an additional 6 weeks (total of 12 weeks). In cultured hepatic stellate cells, adiponectin suppressed platelet-derived growth factor-induced proliferation and migration and attenuated the effect of transforming growth factor-beta 1 on the gene expression of transforming growth factor-beta 1 and connective tissue growth factor and on nuclear translocation of Smad2. CONCLUSIONS: The findings indicate that adiponectin attenuates liver fibrosis and could be a novel approach in its prevention.  相似文献   
2.
3.
Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats   总被引:72,自引:0,他引:72  
BACKGROUND & AIMS: Numerous studies implicate transforming growth factor (TGF)-beta signaling in liver fibrogenesis. To perturb the TGF-beta pathway during this process, we overexpressed Smad7, an intracellular antagonist of TGF-beta signaling, in vivo and in primary-cultured hepatic stellate cells (HSCs). METHODS: Ligation of the common bile duct (BDL) was used to induce liver fibrosis in rats. Animals received injections of an adenovirus carrying Smad7 cDNA into the portal vein during surgery and via the tail vein at later stages. The effect of Smad7 on TGF-beta signaling and activation of HSC was further analyzed in primary-cultured cells. RESULTS: Smad7-overexpressing BDL rats displayed reduced collagen and alpha-SMA expression and reduced hydroxyproline content in the liver, when compared with animals administered AdLacZ. Such a beneficial effect was also observed when Smad7 was expressed in animals with established fibrosis. Accordingly, Smad7 arrested transdifferentiation of primary-cultured HSCs. AdSmad7 infected cells remained in a quiescent stage and retained storage of vitamin A droplets. Smad7 expression totally blocked TGF-beta signal transduction, shown by inhibiting Smad2/3 phosphorylation, nuclear translocation of activated Smad complexes, and activation of (CAGA)(9)-MLP-Luc, resulting in decreased collagen I expression. Smad7 also abrogated TGF-beta-dependent proliferation inhibition of HSC. Smad7 did not decrease expression of alpha-SMA, but immunofluorescent staining with anti alpha-SMA antibodies displayed destruction of the fibrillar organization of the actin cytoskeleton. CONCLUSIONS: In summary, gene transfer of Smad7 inhibits experimental fibrogenesis in vivo. Studies with isolated HSC suggest that the underlying mechanisms involve inhibition of TGF-beta signaling and HSC transdifferentiation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号