首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   664篇
  免费   24篇
耳鼻咽喉   2篇
儿科学   3篇
妇产科学   3篇
基础医学   151篇
口腔科学   5篇
临床医学   13篇
内科学   35篇
皮肤病学   4篇
神经病学   356篇
特种医学   20篇
外科学   17篇
综合类   10篇
预防医学   21篇
眼科学   4篇
药学   18篇
中国医学   9篇
肿瘤学   17篇
  2023年   2篇
  2021年   8篇
  2020年   11篇
  2019年   11篇
  2018年   5篇
  2017年   12篇
  2016年   12篇
  2015年   10篇
  2014年   16篇
  2013年   18篇
  2012年   10篇
  2011年   19篇
  2010年   16篇
  2009年   9篇
  2008年   18篇
  2007年   21篇
  2006年   16篇
  2005年   18篇
  2004年   19篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   8篇
  1999年   2篇
  1998年   6篇
  1997年   13篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   13篇
  1992年   17篇
  1991年   22篇
  1990年   19篇
  1989年   19篇
  1988年   23篇
  1987年   16篇
  1986年   22篇
  1985年   32篇
  1984年   44篇
  1983年   31篇
  1982年   27篇
  1981年   11篇
  1980年   24篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有688条查询结果,搜索用时 31 毫秒
1.
Time-resolved contrast enhanced magnetic resonance angiography (MRA) may suffer from involuntary patient motion. It is noted that while MR signal change associated with motion is large in magnitude and has smooth phase variation in k-phase, signal change associated with vascular enhancement is small in magnitude and has rapid phase variation in k-space. Based upon this observation, a novel projection onto convex sets (POCS) algorithm is developed as an automatic iterative method to remove motion artifacts. The presented POCS algorithm consists of high-pass phase filtering and convex projections in both k-space and image space. Without input of detailed motion knowledge, motion effects are filtered out, while vasculature information is preserved. The proposed method can be effective for a large class of nonrigid motions, including through-plane motion. The algorithm is stable and converges quickly, usually within five iterations. A double-blind evaluation on a set of clinical MRA cases shows that a completely unsupervised version of the algorithm produces significantly better rank scores (P=0.038) when compared to angiograms produced manually by an experienced radiologist.  相似文献   
2.
In situ cDNA:mRNA hybridization is a technique that has been developed for the visualization of cDNA:mRNA hybrids in individual cells. To use this technique to answer questions of regulation in heterogeneous populations of cells in the brain, it must be combined with other procedures allowing for the identification of functional subgroups of neurons. We report here a procedure by which in situ cDNA:mRNA hybridization may be combined with retrograde axonal tracing using the fluorescent tracer fast blue. Using this technique, it now becomes possible to measure mRNA regulation in functional subsets of cells defined by their axonal projections.  相似文献   
3.
A 76-year old woman was admitted because of severe gait ataxia and dysarthric speech that had worsened over the last 24 h. The patient was initially suspected of having repeated transitory ischemic attacks (TIAs) as her daughter reported a similar episode that had happened 3 weeks prior to admission. The onset of spontaneous twisting, choreoathetotic movements of both hands and arms and worsening of symptoms one hour after admission together with a history of lithium therapy lead to the correct diagnosis and appropriate treatment.  相似文献   
4.
The organization of sensory afferents in the antennular nerve (AN) of the spiny lobster and the central arborization of the afferents in the lateral and medial antennular neuropils (LAN, MAN) were analyzed by backfilling the AN with biocytin. The MAN receives primarily thick afferents (diameter ≥ 10 μm) with a consistent pattern of arborization from the medial of the three major divisions of the AN. The LAN, in contrast, receives many thin to medium-sized afferents (diameter ≤ 0.3–5 μm), in addition some with diameters ≥ 5 μm, from the lateral and dorsal divisions of the AN. In contrast to the consistent pattern of arborization in the MAN, afferents projecting to the LAN arborize in widely different patterns. Serially arranged, orthogonal side branches that are suggestive of topographical representation of the serially arranged sensilla on the antennule contribute to the stratification of the LAN. Together with existing electrophysiological data, these morphological findings are consistent with the idea that the MAN receives primarily mechanosensory (largely statocyst) input, as previously thought, but that the LAN receives chemosensory as well as mechanosensory input. The chemosensory input to the LAN would represent a novel pathway for processing chemosensory input from the antennule.  相似文献   
5.
In this study, large areas of goldfish telencephalon were ablated including rostral nucleus preopticus periventriculare (rNPP), and degenerating axons were traced by a modified Fink and Heimer procedure. The lesioning procedure ablated large regions of area dorsalis telencephali pars medialis, centralis, and dorsolateral complex; and completely removed area ventralis telencephali pars dorsalis, ventralis, and lateralis. In addition, the supracommissural nucleus and rNPP were lesioned specifically because both nuclei have been thought to be involved in courtship behavior and endocrine control of reproduction. This investigation demonstrated extensive fiber projections from telencephalic nuclei and/or rNPP to the hypothalamus. Lesioned telencephalon and/or rNPP projected bilaterally to nucleus preopticus and the suprachiasmatic nucleus and unilaterally to the following tuberal nuclei: nucleus anterior tuberis, and the lateral hypothalamic nucleus. A much larger fiber projection to the inferior lobe nuclei was also observed with a large contralateral as well as ipsilateral input.  相似文献   
6.
Retinal projections and visual thalamo-cortical connections were studied in the subterranean mole rat, belonging to the superspecies Spalax ehrenbergi, by anterograde and retrograde tracing techniques. Quantitative image analysis was used to estimate the relative density and distribution of retinal input to different primary visual nuclei. The visual system of Spalax presents a mosaic of both regressive and progressive morphological features. Following intraocular injections of horseradish peroxidase conjugates, the retina was found to project bilaterally to all visual structures described as receiving retinal afferents in non-fossorial rodents. Structures involved in form analysis and visually guided behaviors are reduced in size by more than 90%, receive a sparse retinal innervation, and are cytoarchitecturally poorly differentiated. The dorsal lateral geniculate nucleus, as defined by cyto- and myelo-architecture, cytochrome oxidase, and acetylcholinesterase distribution as well as by afferent and efferent connections, consists of a narrow sheet 3–5 neurons thick, in the dorsal thalamus. Connections with visual cortex are topographically organized but multiple cortical injections result in widespread and overlapping distributions of geniculate neurons, thus indicating that the cortical map of visual space is imprecise. The superficial layers of the superior colliculus are collapsed to a single layer, and the diffuse ipsilateral distribution of retinal afferents also suggests a lack of precise retinotopic relations. In the pretectum, both the olivary pretectal nucleus and the nucleus of the optic tract could be identified as receiving ipsilateral and contralateral retinal projections. The ventral lateral geniculate nucleus is also bilaterally innervated, but distinct subdivisions of this nucleus or the intergeniculate leaflet could not be distinguished. The retina sends a sparse projection to the dorsal and lateral terminal nuclei of the accessory optic system. The medial terminal nucleus is not present. In contrast to the above, structures of the “non-image forming” visual pathway involved in photoperiodic perception are well developed in Spalax. The suprachiasmatic nucleus receives a bilateral projection from the retina and the absolute size, cytoarchitecture, density, and distribution of retinal afferents in Spalax are comparable with those of other rodents. A relatively hypertrophied retinal projection is observed in the bed nucleus of the stria terminalis. Other regions which receive sparse visual input include the lateral and anterior hypothalamic areas, the retrochiasmatic region, the sub-paraventricular zone, the paraventricular hypothalamic nucleus, the anteroventral and anterodorsal nuclei, the lateral habenula, the mediodorsal nucleus, and the basal telencephalon. These results indicate that the apparently global morphological regression of the visual system conceals a selective expansion of structures related to functions of photoperiodic perception and photo-neuroendocrine regulation. We suggest that the evolution of an atrophied eye and reduced visual system is an adaptively advantageous response to the unique subterranean environment. Factors favoring regression include mechanical aspects, metabolic constraints, and competition between sensory systems. The primary advantage of sensory atrophy is the metabolic economy gained by the reduction of visual structures which do not contribute significantly to the animal's fitness. © 1993 Wiley-Liss, Inc.  相似文献   
7.
Electrophysiological mapping criteria were employed to identify visual areas 20a, 20b, 21a, 21b, PMLS, AMLS, ALLS, PLLS, DLS, VLS, and PS in the cat, and to guide placement of tracer deposits. Anterograde tracer methods were used to study the corticostriatal projections of these extrastriate visual areas. The experiments demonstrate that all 11 extrastriate areas send projections to two distinct regions within the striatum, an extensive longitudinal zone within the caudate nucleus, and a more compact region within the posterolateral putamen. Cortical visual projections to the putamen terminate in relatively compact sheets or slabs, and appear to overlap extensively, while those to the caudate nucleus are irregularly patchy and more widely dispersed. Retrograde tracer deposits into the visual recipient zone of the caudate nucleus reveal substantial convergence of other cortical inputs to this same domain. Aspects of visuotopic organization are preserved in the visual projections to both the putamen and the caudate nucleus, but unequivocal retinotopic organization could not be inferred from the available material. Ten of the eleven extrastriate visual area also project topographically onto the visual zone of the claustrum. Area PS does not appear to contribute to the corticoclaustral projections. Five of the extrastriate visual areas (ALLS, PLLS, DLS, VLS, PS) also send sparse projections to the amygdaloid complex. c 1993 Wiley-Liss, Inc.  相似文献   
8.
The distributions of neurons displaying immunoreactivity for two calcium binding proteins, parvalbumin and 28Kd calbindin, were studied in the thalamus of M. fascicularis. Colocalization experiments were carried out to determine the extent to which parvalbumin- and calbindin-like immunoreactivity was found in the same cells and the extent to which either was localized in GABAergic interneurons. Anterograde and retrograde tracing experiments involving the fluorescent tracer, fast blue, were also used to determine that cells expressing the calcium binding proteins projected upon the cerebral cortex. In the dorsal thalamus, nuclei are distinguished by different patterns of parvalbumin-like and calbindin-like immunoreactivity. In certain nuclei, for example the lateral dorsal and anterior pulvinar, neurons express immunoreactivity for only one of the calcium binding proteins. In others, neurons in different layers, for example the dorsal lateral geniculate nucleus, or in different compartments, for example the intralaminar nuclei, express immunoreactivity for either parvalbumin or calbindin; in other nuclei, for example the ventral group, neurons are mixed and immunoreactivity for parvalbumin and calbindin is commonly colocalized. In the ventral thalamus and epithalamus, similar patterns are observed. Colocalization of parvalbumin- and GABA-immunoreactivity is found in all cells of the reticular nucleus but only in certain cells in selected nuclei of the dorsal thalamus, namely the dorsal lateral geniculate and magnocellular medial geniculate. No calbindin-positive cells are also GABA-positive. Most parvalbumin and/or calbindin positive cells in the dorsal thalamus project to the cerebral cortex, as indicated by the retrograde tracing studies, and many parvalbumin positive fibres entering the cerebral cortex could also be shown to contain fast blue anterogradely transported from a thalamic injection. Most of the major sensory and motor pathways entering the dorsal thalamus express parvalbumin immunoreactivity. The optic tract also expresses calbindin immunoreactivity but most other calbindin positive fibres entering the thalamus ascend in the midbrain tegmentum. The differential distributions of parvalbumin and calbindin implied by these results suggest that thalamic cells belonging to different functional systems and projecting differentially upon the cerebral cortex can be distinguished by differential expression of these or closely related calcium binding proteins. This may yield clues to their differential responsivity to afferent driving.  相似文献   
9.
In intact cats, it is generally considered that the lateral posterior-pulvinar complex (LP-pulvinar) does not receive direct retinal terminals, with the exception of the retino-recipient zone known as the geniculate wing. There is, however, some evidence that early lesions of the visual cortex can occasionally induce the formation of novel retinal projections to the LP nucleus. Given the importance of knowing the connectivity pattern of the LP-pulvinar complex in intact and lesioned animals, we used the B fragment of cholera toxin, a sensitive anterograde tracer, to reinvestigate the retinal projections to the LP-pulvinar in normal cats and in cats with early unilateral lesions of the visual cortex (areas 17 and 18). Immunohistochemical localization of the toxin was performed to show the distribution and morphology of retinofugal terminals. A direct bilateral but predominantly contralateral retinal projection reached the caudal portion of LPl and LPm in the form of patches located mainly along its dorsomedial surface and many scattered terminals. The distribution of retinal projections to LP-pulvinar in intact and operated cats did not differ. Contrary to what had been previously reported, we found no evidence for lesion-induced sprouting of retinal axons in these higher-order thalamic nuclei. Retinal input to the LP-pulvinar might modulate visual responses driven by primary visual cortex or superior colliculus.  相似文献   
10.
Summary Whether or not the frog olfactory neuroreceptor cells project bilaterally to the olfactory bulb is still a debated question. We therefore decided to ascertain whether bilateral projections of the primary olfactory input exist and if so to investigate their extent. Reproducible extracellular bilateral bulbar potentials were recorded in the frog following electrical stimulation of dorsal or ventral olfactory nerve bundles. The general features of the contralateral evoked responses were very similar to those of the ipsilateral response. The contralateral response disappeared after transection of the rostral part of the olfactory interbulbar adhesion but not following transection of the habenular or anterior commissures. Horseradish peroxidase labelling showed that the fiber terminations of the olfactory nerve bundle was not restricted to the ipsilateral olfactory bulb but included the medial aspects of the contralateral bulb. The intertelencephalic sections increased the magnitude of the ipsilateral evoked responses. Olfactory bulb isopotential maps revealed a rough topographical correspondence between the olfactory neuroepithelium and bulb along the medio-lateral axis as well as along the dorso-ventral axis. In addition, a projection of the medial and central part of the olfactory sac to the medial part of the contralateral olfactory bulb through the interbulbar adhesion was confirmed. These findings suggest first, that the fibers from the neuro-receptors located in either the ventral or the dorsal olfactory mucosae project to both olfactory bulbs, and second, that the left and right bulbs exert a constant inhibition on each other via the habenular commissure.Abbreviations AON anterior olfactory nucleus - ax olfactory neuroreceptor axon - BA bulbar adhesion - DI latero-dorsal olfactory nerve bundle - DII centro-dorsal olfactory nerve bundle - DIII mediodorsal olfactory nerve bundle - EPL external plexiform layer - GL glomerular layer - gl glomerulus - GRL granular cell layer - MOB main olfactory bulb - m mitral cell - MBL mitral cell body layer - ON olfactory nerve - V lateral ventricule - VI latero-ventral ol-factory nerve bundle - VII centro-ventral olfactory nerve bundle - VIII medio-ventral olfactory nerve bundle - VN vomero-nasal nerve  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号