首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
基础医学   11篇
内科学   3篇
药学   1篇
肿瘤学   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein tristetraprolin (TTP) and its homolog BRF-1, which bind AREs and activate mRNA decay. TTP and BRF-1 each contain two activation domains that can activate mRNA decay after fusion to a heterologous RNA-binding protein, and inhibit ARE-mediated mRNA decay when overexpressed. Both activation domains employ trans-acting factors to trigger mRNA decay, and the N-terminal activation domain functions as a binding platform for mRNA decay enzymes. Our data suggest that the TTP protein family functions as a molecular link between ARE-containing mRNAs and the mRNA decay machinery by recruitment of mRNA decay enzymes, and help explain how deadenylation, decapping, and exonucleolytic decay can all be independently activated on ARE-containing mRNAs. This describes a potentially regulated step in activation of mRNA decay.  相似文献   
2.
A novel class of bacteria-induced small RNAs in Arabidopsis   总被引:6,自引:0,他引:6  
  相似文献   
3.
The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function.  相似文献   
4.
5.
Al‐Raqad syndrome (ARS) is a rare autosomal recessive congenital disorder, associated mainly with developmental delay, and intellectual disability. This syndrome is caused by mutations in DCPS, encoding scavenger mRNA decapping enzyme, which plays a role in the 3‐prime‐end mRNA decay pathway. Whole‐exome sequencing was performed on an offspring of a consanguineous family presenting with developmental delay, intellectual disability, growth retardation, mild craniofacial abnormalities, cerebral and cerebellar atrophy, and white matter diffuse hypomyelination pattern. A novel biallelic missense variant, c.918G>C p. (Glu306Asp), in the DCPS gene was identified which was confirmed by sanger sequencing and segregation analysis subsequently. Few cases of ARS have been described up to now, and this study represents a 7‐years‐old boy presenting with central and peripheral nervous system impaired myelination in addition to ocular and dental manifestation, therefore outstretch both neuroimaging and clinical findings of this ultra‐rare syndrome.  相似文献   
6.
7.
CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1-CCR4-NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs.  相似文献   
8.
The removal of the 5′ cap structure by the decapping enzyme DCP2 inhibits translation and generally commits the mRNA to irreversible 5′-to-3′ exonucleolytic degradation by XRN1. DCP2 catalytic activity is stimulated by DCP1, and these proteins form the conserved core of the decapping complex. Additional decapping factors orchestrate the recruitment and activity of this complex in vivo. These factors include enhancer of decapping 3 (EDC3), EDC4, like Sm14A (LSm14A), Pat, the LSm1–7 complex, and the RNA helicase DDX6. Decapping factors are often modular and feature folded domains flanked or connected by low-complexity disordered regions. Recent studies have made important advances in understanding how these disordered regions contribute to the assembly of decapping complexes and promote phase transitions that drive RNP granule formation. These studies have also revealed that the decapping network is governed by interactions mediated by short linear motifs (SLiMs) in these disordered regions. Consequently, the network has rapidly evolved, and although decapping factors are conserved, individual interactions between orthologs have been rewired during evolution. The plasticity of the network facilitates the acquisition of additional subunits or domains in pre-existing subunits, enhances opportunities for regulating mRNA degradation, and eventually leads to the emergence of novel functions.  相似文献   
9.
MicroRNAs (miRNAs) are small non-coding RNAs involved in RNA silencing that play a role in many biological processes. They are involved in the development of many diseases, including cancer. Extensive experimental data show that they play a role in the pathogenesis of cancer as well as the development of drug resistance during treatments. The aim of this work was to detect differentially expressed miRNAs in MTX-resistant cells. Thus, miRNA microarrays of sensitive and MTX-resistant HT29 colon cancer cells were performed. The results were analyzed using the GeneSpring GX11.5 software. Differentially expressed miRNAs in resistant cells were identified and miR-224, which was one of the most differentially expressed miRNAs and with high raw signal values, was selected for further studies. The underexpression of miR-224 was also observed in CaCo-2 and K562 cells resistant to MTX. Putative targets were predicted using TargetScan 5.1 software and integrated with the data from expression microarrays previously performed. This approach allowed us to identify miR-224 targets that were differentially expressed more than 2-fold in resistant cells. Among them CDS2, DCP2, HSPC159, MYST3 and SLC4A4 were validated at the mRNA level by qRT-PCR. Functional assays using an anti-miR against miR-224 desensitized the cells towards MTX, mimicking the resistant phenotype. On the other hand, siRNA treatment against SLC4A4 or incubation of Poly Purine Reverse Hoogsteen (PPRH) hairpins against CDS2 or HSPC159 increased sensitivity to MTX. These results revealed a role for miR-224 and its targets in MTX resistance in HT29 colon cancer cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号