首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
儿科学   8篇
基础医学   5篇
临床医学   2篇
神经病学   1篇
预防医学   2篇
药学   3篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
2.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator in hepatic lipid metabolism and a potential therapeutic target for dyslipidemia. However, in humans hepatic PPARalpha-regulated genes remain unclear. To investigate the effect of PPARalpha agonism on mRNA expressions of lipid metabolism-related genes in human livers, a potent PPARalpha agonist, KRP-101 (KRP), was used to treat the human hepatoma cell line, HepaRG cells. KRP did not affect AOX or L-PBE, which are involved in peroxisomal beta-oxidation. KRP increased L-FABP, CPT1A, VLCAD, and PDK4, which are involved in lipid transport or oxidation. However, the EC(50) values (114-2500 nM) were >10-fold weaker than the EC(50) value (10.9 nM) for human PPARalpha in a transactivation assay. To search for more sensitive genes, we determined the mRNA levels of apolipoproteins, apoA-I, apoA-II, apoA-IV, apoA-V, and apoC-III. KRP had no or little effect on apoA-I, apoC-III, and apoA-II. Interestingly, KRP increased apoA-IV (EC(50), 0.99 nM) and apoA-V (EC(50), 0.29 nM) with high sensitivity. We identified apoA-IV as a PPARalpha-upregulated gene in a study using PPARalpha siRNA. Moreover, when administered orally to dogs, KRP decreased the serum triglyceride level and increased the serum apoA-IV level in a dose-dependent manner. These findings suggest that apoA-IV, newly identified as a highly sensitive PPARalpha-regulated gene in human livers, may be one of the mechanisms underlying PPARalpha agonist-induced triglyceride decrease and HDL elevation.  相似文献   
3.
The mechanisms of prevention of the development of liver cancer by NIK-333, an acyclic retinoid (ACR), were investigated. The transgenic mice expressing the dominant negative form of retinoic acid receptor alpha (RARE mice), that produce reactive oxygen species and lead to development of liver tumor were used. The effect of NIK-333 on hepatocarcinogenesis in RARE mice was studied. The RARE mice were examined after feeding 0.03% and 0.06% NIK-333 diets at 12 months of age. In the mice fed 0.06% NIK-333 diet, tumor incidence was greatly suppressed, compared to that of wild type mice (0/9 versus 5/9, P<0.05), but not in the mice fed 0.03% NIK-333 diet. In addition, expression of cytochrome p450 4a14 and acyl-CoA oxidase was normalized, and the percentages of positive cells for 8-hydroxy-2'-deoxyguanosine, 4-hydroxy-2-nonenal and proliferating cell nuclear antigen were decreased. Furthermore, expression of beta-catenin and cyclin D1 was also depressed. These data suggest that NIK-333 suppressed liver tumor in association with repression of oxidative stress.  相似文献   
4.
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a disorder of fatty acid beta-oxidation that can present at any age with cardiomyopathy, rhabdomyolysis, hepatic dysfunction, and/or nonketotic hypoglycemia. Through the expansion of newborn screening programs an increasing number of individuals with VLCAD deficiency are being identified prior to the onset of symptoms allowing early initiation of therapy. The development of a safe, durable, and effective VLCAD gene delivery system for use at the time of diagnosis could result in a significant improvement in the quality and duration of life for patients with VLCAD deficiency. To this end, we developed a construct containing the human VLCAD cDNA under the control of the strong CMV promoter (pCMV-hVLCAD). A novel rabbit polyclonal anti-VLCAD antibody was prepared using a 24 amino-acid peptide unique to the human VLCAD protein to study human VLCAD expression in immune competent mice. Antibody specificity was demonstrated in Western blots of human VLCAD deficient fibroblasts and in pCMV-hVLCAD transiently transfected VLCAD deficient fibroblasts. Transfected fibroblasts showed correction of the metabolic block as demonstrated by normalization of C14- and C16-acylcarnitine species in cell culture media and restoration of VLCAD activity in cells. Following tail vein injection of pCMV-hVLCAD into mice, we demonstrated expression of hVLCAD in liver. Altogether, these steps are important in the development of a durable gene therapy for VLCAD deficiency.  相似文献   
5.
VLCAD deficiency is an autosomal recessive disorder caused by a defect of fatty acid oxidation. The phenotype is classified into three clinical forms on the basis of the onset of symptoms: a severe form with neonatal onset; a milder form with childhood onset; and a late‐onset form. The neonatal form is the most common, and has a higher mortality rate than the others. We report the case of a newborn infant with VLCAD deficiency who developed ventricular fibrillation, which was successfully treated by intensive care, but who suddenly died after a respiratory syncytial virus infection. Early institution of i.v. glucose treatment and active immunization with vaccine, such as palivizumab (anti‐RSV mAb), may be important to reduce the frequency and severity of life‐threatening episodes.  相似文献   
6.
Neonatal screening programs for very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) have recently been implemented. We report 2 newborns with elevated C14:1-carnitine levels on day 3 of life and normal levels on days 5 to 7. Enzyme and molecular analyses confirmed VLCADD in the first patient and heterozygosity in the second patient. We conclude that the diagnosis of VLCADD can be missed by acylcarnitine analysis during anabolic conditions. An increased C14:1-carnitine level can also occur in heterozygous individuals. Elevated C14:1-carnitine level on neonatal screening warrants further diagnostic workup even if a repeat sample demonstrates normal acylcarnitine levels.  相似文献   
7.
8.
BACKGROUND: In humans with deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD), C14-C18 acylcarnitines accumulate. In this paper we have used the VLCAD knockout mouse as a model to study changes in blood carnitine and acylcarnitine profiles under stress. DESIGN: VLCAD knockout mice exhibit stress-induced hypoglycaemia and skeletal myopathy; symptoms resembling human VLCADD. To study the extent of biochemical derangement in response to different stressors, we determined blood carnitine and acylcarnitine profiles after exercise on a treadmill, fasting, or exposure to cold. RESULTS: Even in a nonstressed, well-fed state, knockout mice presented twofold higher C14-C18 acylcarnitines and a lower free carnitine of 72% as compared to wild-type littermates. After 1 h of intense exercise, the C14-C18 acylcarnitines in blood significantly increased, but free carnitine remained unchanged. After 8 h of fasting at 4 degrees C, the long-chain acylcarnitines were elevated 5-fold in knockout mice in comparison with concentrations in unstressed wild-type mice (P < 0.05), and four out of 12 knockout mice died. Free carnitine decreased to 44% as compared with unstressed wild-type mice. An increase in C14-C18 acylcarnitines and a decrease of free carnitine were also observed in fasted heterozygous and wild-type mice. CONCLUSIONS: Long-chain acylcarnitines in blood increase in knockout mice in response to different stressors and concentrations correlate with the clinical condition. A decrease in blood free carnitine in response to severe stress is observed in knockout mice but also in wild-type littermates. Monitoring blood acylcarnitine profiles in response to different stressors may allow systematic analysis of therapeutic interventions in VLCAD knockout mice.  相似文献   
9.
Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPARα), suggesting the benefit of PPARα activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPARα agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPARα agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPARα deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NFκB activation. These effects are common to other fibrates and dependent on PPARα function. Interestingly, however, clofibrate pretreatment also exerted PPARα-independent tubular toxicities in PPARα-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPARα-dependent tubular protective effects outweigh their PPARα-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPARα activator that has a steady serum concentration regardless of kidney dysfunction.  相似文献   
10.
Capsaicin, a spicy component of hot peppers, has been shown to improve inflammatory disease and obesity. In this study, we tested the hypothesis that the anti-inflammatory activity of capsaicin can be used to improve free fatty acid (FFA)-induced inflammation by reducing gene expression of macrophage inflammatory protein 1 (MIP-1) and interleukin 8 (IL-8) in THP-1 (human acute monocytic leukemia cell) macrophages. To investigate whether capsaicin ameliorates palmitate-induced MIP-1 and IL-8 gene expressions, we treated THP-1 cells with palmitate in the presence or absence of capsaicin and measured MIP-1 and IL-8 by real-time polymerase chain reaction. To elucidate the mechanism by which capsaicin effects on palmitate-induced MIP-1 and IL-8 gene expressions, we performed immunoblotting with stress kinase-related antibodies and measured palmitate oxidation and palmitate oxidation-related gene expression. Palmitate and stearate but not the unsaturated FFA oleate significantly increased MIP-1 and IL-8 expressions in THP-1 macrophages. Treatment with capsaicin or FFA oxidation stimulators inhibited palmitate-induced MIP-1 and IL-8 expressions in THP-1 macrophages. Capsaicin increased the gene expression of carnitine palmitoyltransferase 1 and the β-oxidation of palmitate. Furthermore, capsaicin significantly reduced palmitate-stimulated activation of c-Jun N-terminal kinase, c-Jun, and p38. Our data suggest that the attenuation of palmitate-induced MIP-1 and IL-8 gene expressions by capsaicin is associated with reduced activation of c-Jun N-terminal kinase, c-Jun, and p38 and preserved β-oxidation activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号