首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础医学   1篇
临床医学   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The aim of the present study was to compare the relative contribution of the soleus motor units (MUs) activated by H and M waves to the plantar-flexion torque in the morning and in the evening. Twelve healthy male subjects (physical education students) took part in this investigation. The electromechanical properties of the plantar flexor muscles were recorded at two different times of day: between 06:00 and 08:00 h and between 17:00 and 19:00 h. Plantar-flexion torque and concomitant electromyographic activity of soleus muscle were assessed under voluntary and evoked conditions. The results indicated a significant decrease in maximal voluntary muscle torque of triceps surae and associated soleus EMG in the evening as compared with the morning. The mean values of MVC ranged from 131.6±9.6 N m in the morning to 125.1±9.0 N m in the evening. Peak-to-peak values of soleus H max and M max potentials were comparable in the morning and in the evening (2.97 vs 3.18 mV and 7.95 vs 7.44 mV for H max and M max, respectively). The H max/M max ratio was not modified between the two experimental test sessions (34.8 vs 41.3%). The peak amplitude of the twitch produced by the H max wave decreased significantly. When estimating the mechanical contribution to of the slowest and fastest-twitch MUs reflexively and directly activated, we observed that the contribution of the slowest MUs did not change while those of the fastest decreased significantly in the evening. To conclude, a weaker reflex twitch torque caused by higher fatigue state of the MUs directly activated by the M wave which accompanied H max in the evening may be regarded as a possible explanation of the weaker plantar-flexion torque production in the evening.  相似文献   
2.

Background

Although single-legged heel-raise cycles are often performed on an incline in different knee flexion positions to discriminate the relative contribution of the triceps surae muscles, detailed kinematic and kinetic analyses of this procedure are not available. Our study characterizes and compares the biomechanics and clinical outcomes of single-legged heel-raise cycles performed to volitional exhaustion on an incline with the knee straight (0°) and bent (45°), considering the effect of sex and age.

Methods

Fifty-six male and female volunteers, with equal numbers of younger (20 to 40 years of age) and older (40 to 60 years of age) individuals, completed a maximal number of heel-raise cycles on an incline at both nominal knee angles. Kinematic and kinetic data were acquired during testing using a 3D motion capturing system and multi-axial force plate. The impact of fatigue on performance was quantified using changes in maximal voluntary isometric contraction force and biomechanical performance of cycles.

Findings

Overall, participants completed three more cycles and maintained better biomechanical performance with 45° than 0° of knee flexion. More precisely, the decreases in maximal heel-raise heights, plantar-flexion angles at maximal height and ranges of ankle motion per cycle were all smaller with the knee bent. However, several outcomes indicated similar plantar-flexion fatigue at both knee angles. Males demonstrated a more rapid decline in peak ground reaction forces during testing; but otherwise, neither sex nor age significantly impacted outcomes.

Interpretation

It is concluded that the differences discerned here in the biomechanics of single-legged heel-raise cycles performed at 0° and 45° of knee flexion to volitional exhaustion on an incline may be too small to identify in clinical settings or reflect substantial alterations in the relative contribution of the triceps surae muscles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号