首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
基础医学   3篇
临床医学   1篇
神经病学   4篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Postsynaptic targeting of the Drosophila tumour suppressor discs-large (Dlg) critically depends on its SH3 and GK domains. Here, we asked whether these domains are also involved in subcellular targeting of the mammalian Dlg homolog SAP97 and its interacting partners in CNS cortical neurons by analysing a recently described mouse mutant lacking the SH3 and GK domains of SAP97. Both wildtype and truncated SAP97 were predominantly expressed in perinuclear regions, in a pattern suggesting association with the endoplasmic reticulum. Weaker immunoreactivity was found in neurites colocalizing with both dendritic and axonal markers. As SAP97 has been implicated in the early intracellular processing of the glutamate receptor GluR1, we studied biochemical maturation and subcellular localization of GluR1 in the mutants. Both the glycosylation pattern and synaptic clustering of GluR1 were indistinguishable from wildtype mice. Synaptic clustering of the guanylate kinase domain interacting protein GKAP was also intact. Our data demonstrate that truncation of the SH3 and GK domains of SAP97 in mice does neither change its subcellular distribution nor does it disrupt synaptic structure or protein clustering, as opposed to severe missorting of the respective mutant Dlg protein in Drosophila.  相似文献   
2.
目的 探讨慢性强迫游泳应激对大鼠脑组织内鸟苷酸激酶相关蛋白表达的影响.方法将30只健康雄性Sprague-Dawley大鼠按体重随机分为对照组、游泳应激组、游泳应激+MK801组,每组10只,建立动物模型,将游泳应激组,游泳应激+MK801组大鼠置于(100×80×80)cm3方型容器中进行强迫游泳,每次1只,每只每天游10 min,持续14 d,游泳应激+MK801组大鼠每天游泳之前皮下注射MK801(1 g·kg·d-1).观察3组不动时间、体重增长情况、液体消耗量.采用免疫印迹方法测定慢性强迫游泳应激后各组大鼠海马、前额皮质、基底结的鸟苷酸激酶相关蛋白表达水平.结果 经慢性强迫游泳应激后,与对照组及游泳应激+MK801组相比,游泳应激组体重增长量,糖水消耗量、糖水偏爱百分比均显著减少(P<0.05).游泳应激组大鼠在第14 d强迫游泳中,不动时间较第1 d显著增加(P<0.05),而游泳应激+MK801组则无显著变化.游泳应激组海马鸟苷酸激酶相关蛋白表达量显著高于对照组及游泳应激+MK801组(P<0.01),前额皮质及基底结的鸟背酸激酶相关蛋白量3组间差异无显著性.结论 慢性强迫应激对大鼠的心理行为和牛理成长均产生影响,鸟苷酸激酶相关蛋白可能是慢性应激反应的相关蛋白.  相似文献   
3.
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure–function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure–function of dendritic spine, a “hot site” of synaptic plasticity.  相似文献   
4.
The supramolecular anchoring/signaling complex at the postsynaptic density of glutamatergic synapses has been proposed to play a key role in regulating synaptic function and plasticity. One class of proteins present in the complex is the SAP90/PSD-95-associated protein family (SAPAPs). The SAPAPs, identified by their direct interaction with PSD-95 family proteins, were initially proposed to function in the anchoring/signaling complex as linker proteins between glutamate receptor binding proteins and the cytoskeleton. However, recent studies have indicated that the SAPAPs also bind to signaling molecules and may thus have multiple roles at synapses. Four homologous genes encoding SAPAP proteins have been previously identified. As a first step toward understanding the physiological function of the SAPAPs, we have investigated in detail, at both the mRNA and protein levels, the localization of the individual SAPAP genes in the adult murine nervous system. We find that the SAPAP mRNAs are highly, yet differentially, expressed in many regions of the brain, including the hippocampus and cerebellum. Furthermore, SAPAP3 mRNA is targeted to dendrites, whereas SAPAP1, -2, and -4 mRNAs are detected mainly in cell bodies. The SAPAP proteins are localized at synapses in a manner consistent with mRNA expression. Surprisingly, in addition to glutamatergic synapse localization, antibody staining also reveals that the SAPAP proteins are localized at cholinergic synapses, including neuronal cholinergic synapses and the neuromuscular junction. Together, these results indicate that the SAPAPs are general components of excitatory synapses and that each of these proteins may perform a distinct function.  相似文献   
5.
Synaptic adhesion molecules are known to participate in various steps of synapse development including initial contacts between dendrites and axons, formation of early synapses, and their maturation and plastic changes. Notably, a significant subset of synaptic adhesion molecules associates with synaptic scaffolding proteins, suggesting that they may act in concert to couple trans-synaptic adhesion to molecular organization of synaptic proteins. Here, we describe an emerging group of synaptic adhesion molecules that directly interact with the abundant postsynaptic scaffold PSD-95, which include neuroligins, NGLs, SALMs, and ADAM22, and discuss how these proteins and PSD-95 act together to regulate synaptic development. PSD-95 may be one of the central organizers of synaptic adhesion that recruits diverse proteins to sites of synaptic adhesion, promotes trans-synaptic signaling, and couples neuronal activity with changes in synaptic adhesion.  相似文献   
6.
7.
The synaptic plasticity that is addressed in this review follows neurodegeneration in the brain and thus has both structural as well as functional components. The model of neurodegeneration that has been selected is the kainic acid lesioned hippocampus. Degeneration of the CA3 pyramidal cells results in a loss of the Schaffer collateral afferents innervating the CA1 pyramidal cells. This is followed by a period of structural plasticity where new synapses are formed. These are associated with changes in the numbers and shapes of spines as well as changes in the morphometry of the dendrites. It is suggested that this synaptogenesis is responsible for an increase in the ratio of NMDA to AMPA receptors mediating excitatory synaptic transmission at these synapses. Changes in the temporal and spatial properties of these synapses resulted in an altered balance between LTP and LTD. These properties together with a reduction in the inhibitory drive increased the excitability of the surviving CA1 pyramidal cells which in turn triggered epileptiform bursting activity. In this review we discuss the insights that may be gained from studies of the underlying molecular machinery.

Developments in one of the collections of the cogs in this machinery has been summarized through recent studies characterizing the roles of neural recognition molecules in synaptic plasticity in the adult nervous systems of vertebrates and invertebrates. Such investigations of neural cell adhesion molecules, cadherins and amyloid precursor protein have shown the involvement of these molecules on the morphogenetic level of synaptic changes, on the one hand, and signal transduction effects, on the other. Further complex cogs are found in the forms of the low-density lipoprotein receptor (LDL-R) family of genes and their ligands play pivotal roles in the brain development and in regulating the growth and remodelling of neurones. Evidence is discussed for their role in the maintenance of cognitive function as well as Alzheimer's. The molecular mechanisms responsible for the clustering and maintenance of transmitter receptors at postsynaptic sites are the final cogs in the machinery that we have reviewed.

Postsynaptic densities (PSD) from excitatory synapses have yielded many cytoskeletal proteins including actin, spectrin, tubulin, microtubule-associated proteins and calcium/calmodulin-dependent protein kinase II. Isolated PSDs have also been shown to be enriched in AMPA, kainate and NMDA receptors. However, recently, a new family of proteins, the MAGUKs (for membrane-associated guanylate kinase) has emerged. The role of these proteins in clustering different NMDA receptor subunits is discussed. The MAGUK proteins are also thought to play a role in synaptic plasticity mediated by nitric oxide (NO). Both NMDA and non-NMDA receptors are highly clustered at excitatory postsynaptic sites in cortical and hippocampal neurones but have revealed differences in their choice of molecular components. Both GABAA and glycine (Gly) receptors mediate synaptic inhibition in the brain and spinal cord. Whilst little is known about how GABAA receptors are localized in the postsynaptic membrane, considerable progress has been made towards the elucidation of the molecular mechanisms underlying the formation of Gly receptors. It has been shown that the peripheral membrane protein gephyrin plays a pivotal role in the formation of Gly receptor clusters most likely by anchoring the receptor to the subsynaptic cytoskeleton. Evidence for the distribution as well as function of gephyrin and Gly receptors is discussed. Postsynaptic membrane specializations are complex molecular machinery subserving a multitude of functions in the proper communication between neurones. Despite the fact that only a few key players have been identified it will be a fascinating to watch the story as to how they contribute to structural and functional plasticity unfold.  相似文献   

8.
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号