首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
基础医学   4篇
  2016年   1篇
  2013年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Fanconi anemia (FA) is a rare genetic disorder characterized by congenital malformations, progressive bone marrow failure (BMF), and susceptibility to malignancies. FA is caused by biallelic or hemizygous mutations in one of 15 known FA genes, whose products are involved in the FA/BRCA DNA damage response pathway. Here, we report on a patient with previously unknown mutations of the most recently identified FA gene, SLX4/FANCP. Whole exome sequencing (WES) revealed a nonsense mutation and an unusual splice site mutation resulting in the partial replacement of exonic with intronic bases, thereby removing a nuclear localization signal. Immunoblotting detected no residual SLX4 protein, which was consistent with abrogated interactions with XPF/ERCC1 and MUS81/EME1. This cellular finding did not result in a more severe clinical phenotype than that of previously reported FA‐P patients. Our study additionally exemplifies the versatility of WES for the detection of mutations in heterogenic disorders such as FA.  相似文献   
2.
Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation‐carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.  相似文献   
3.
Fanconi anemia is a genetically heterogeneous autosomal recessive disorder characterized by development abnormalities, bone marrow failure, and childhood cancers. Compelling evidence indicates a common genetic basis for FA and breast/ovarian cancer susceptibility. Recently, biallelic germ-line mutations in SLX4 have been demonstrated to cause a previously unknown FA subtype (FA-P). We address the role of SLX4/FANCP in breast/ovarian cancer susceptibility by conducting a comprehensive mutation scanning in 486 index cases from non-BRCA1/BRCA2 multiple-case breast and/or ovarian cancer families (non-BRCA1/2 families) from Spain. We detected one unequivocal loss-of-function mutation (p.Glu1517X). In addition, one missense change (p.Arg372Trp) predicted to be pathogenic by in silico analysis co-segregates with disease in one family. Overall, the study indicates that SLX4 mutation screening will have a very low impact (if any) in the genetic counseling of non-BRCA1/2 families.  相似文献   
4.
SLX4/FANCP is a recently discovered novel disease gene for Fanconi anemia (FA), a rare recessive disorder characterized by chromosomal instability and increased cancer susceptibility. Three of the 15 FA genes are breast cancer susceptibility genes in heterozygous mutation carriers—BRCA2, PALB2, and BRIP1. To investigate if defects in SLX4 also predispose to breast cancer, the gene was sequenced in a cohort of 729 BRCA1/BRCA2‐negative familial breast cancer cases. We identified a single splice site mutation (c.2013+2T>A), which causes a frameshift by skipping of exon 8. We also identified 39 missense variants, four of which were selected for functional testing in a Mitomycin C‐induced growth inhibition assay, and appeared indistinguishable from wild type. Although this is the first study that describes a truncating SLX4 mutation in breast cancer patients, our data indicate that germline mutations in SLX4 are very rare and are unlikely to make a significant contribution to familial breast cancer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号