首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
基础医学   15篇
综合类   1篇
  2013年   15篇
  2007年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
This study describes a new drug-loaded coating scaffold applied in infection therapy during bone regeneration. Chitosan (CS) containing antibacterial berberine was coated on a nano-hydroxyapatite/polyamide66 (n-HA/PA66) scaffold to realize bone regeneration together with antimicrobial properties. The porous scaffold was fabricated using the phase-inversion method with a porosity of about 84% and macropore size of 400–600 μm. The morphology, mechanical properties and drug-release behavior were investigated at different ratios of chitosan to berberine. The results show that the elastic modulus and compressive strength of the coated scaffolds were improved to 35.4 MPa and 1.7 MPa, respectively, about 7 times and 3 times higher than the uncoated scaffolds. After a burst release of berberine within the first 3 h in PBS solution, a continuous berberine release can last 150 h, which is highly dependent on the coating concentration and suitable for antibacterial requirement of orthopaedic surgery. The bactericidal test confirms a strong antibiotic effect of the delivery system and the minimum inhibitory concentration of the drug is 0.02 mg/ml. Moreover, in vitro biological evaluation demonstrates that the coating scaffolds act as a good matrix for MG63 adhesion, crawl, growth and proliferation, suggesting that the antibacterial delivery system has no cytotoxicity. We expect the drug-delivery system to have a potential application in bone regeneration or defect repair.  相似文献   
2.
Chitosan, a derivative of the bio-polysaccharide chitin, has shown promise as a bioactive material for implant, tissue engineering and drug-delivery applications. The aim of this study was to evaluate the contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Rough ground titanium (Ti) coupons were solution cast and bonded to 91.2% de-acetylated chitosan (1 wt% chitosan in 0.2% acetic acid) coatings via silane reactions. Non-coated Ti was used as controls. Samples were sterilized by ethylene oxide gas prior to experiments. Contact angles on all surfaces were measured using water. 5 × 104 cells/ml of ATCC CRL 1486 human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, were used for the cell attachment study. SEM evaluations were performed on cells attached to all surfaces. Contact angles and cell attachment on all surfaces were statistically analyzed using ANOVA. The chitosan-coated surfaces (76.4 ± 5.1°) exhibited a significantly greater contact angle compared to control Ti surfaces (32.2±6.1°). Similarly, chitosan-coated surfaces exhibited significantly greater (P < 0.001) albumin adsorption, fibronectin adsorption and cell attachment, as compared to the control Ti surfaces. Coating chitosan on Ti surfaces decreased the wettability of the Ti, but increased protein adsorption and cell attachment. Increased protein absorption and cell attachment on the chitosan-coated Ti may be of benefit in enhancing osseointegration of implant devices.  相似文献   
3.
The complex biological and mechanical requirements for implant materials in the human body generally cannot be furnished by one single material. In the present study, hydroxyapatite/polymer composite coatings with different contents of hydroxyapatite were produced using a flame spray system. This processing route is intended to obtain a coating with an optimal combination of biological and mechanical properties of these two materials for skeletal implants. The composite coatings were produced from a mechanical blend of hydroxyapatite and ethylene methacrylic acid copolymer powders, which were delivered from a fluidized bed powder feeder. Characterization of the coating surface morphology, polished coating cross-sections, and fracture surface morphology was conducted by scanning electron microscopy. The dissolution behavior of the coatings was evaluated with a calcium-specific ion meter. The stress-strain behavior was investigated by tensile testing. The biological and mechanical properties were found to be related to the volume and distribution of the hydroxyapatite in the polymer matrix. This technique provides a means of preparing hydroxyapatite/polymer coatings for application as implants.  相似文献   
4.
The potential of tyrosinases to activate tyrosine residues of wool protein fibres for cross-linking with different materials like collagen, elastin and gelatine was assessed. Natural fibres like wool offer an excellent environment for the growth of micro-organisms when the conditions like moisture, oxygen and temperature are appropriate. Coating with collagen, a very useful biomaterial with bactericidal and fungicidal properties, could be used to improve the properties of wool-based materials, especially when applied in hygienically sensitive applications like in hospitals. Tyrosinases were shown to catalyse the oxidation of tyrosine residues in wool and wool hydrolysates as model substrates, as determined by UV-Vis spectroscopy. Structural differences of the surface were evident from the increase of the intensity in the NH bending and stretching regions in the spectra of NIR FT Raman analysis of the enzyme treated and grafted wool fibres. The durability of the coating was also shown by using FITC-labelled collagen that was bound to the wool fibres, even after severe washing. Additionally, antimicrobial properties were successfully imparted due to the collagen grafted on the wool fibres. The functional and mechanical properties of the treated wool fibres showed no significant changes.  相似文献   
5.
Wound infection is a complication feared in surgery. The aim of this study was to develop new anti-infective coatings of surgical sutures and to compare the anti-microbial effectiveness and biocompatibility to the well-established Vicryl Plus®. Synthetic absorbable PGA surgical sutures were coated with three different chlorhexidine concentrations and two different octenidine concentrations in combination with palmitic acid and lauric acid. Drug-release kinetics lasting 96 h were studied in phosphate-buffered saline at 37°C. Anti-infective characteristics were determined by measuring the change in optical density of Staphylococcus aureus suspensions charged with coated sutures over time. Microorganisms adsorbed at the surface of coated sutures were assessed on blood agar plates and coated sutures eluted for 24 h were placed on bacterial lawns cultured on Mueller–Hinton plates to prove retained anti-microbial potency. A cell proliferation assay was performed to assess the degree of cytotoxicity. Anti-infective characteristics and biocompatibility were compared to Vicryl Plus®. A coating technology for slow-release drug-delivery systems on surgical sutures could be developed. All coatings showed a continuous drug release within 96 h. Individual chlorhexidine and octenidine coated sutures showed superior anti-infective characteristics but inferior biocompatibility in comparison to Vicryl Plus®. We conclude that the developed anti-infective suture coatings consisting of lipid-based drug-delivery systems in combination with antiseptics are highly effective against bacterial colonization in vitro; however, drug doses have to be adjusted to improve biocompatibility.  相似文献   
6.
Objective To observe the long-term impact of calcium phosphate (CaP) sol-gel coating on bone growth around porous-surfaced implant. Methods The porous-surfaced Ti-6Al-4V implants were prepared with the addition of a thin film of CaP sol-gel coating, and implanted into the tibiae of 8 rabbits, each with two implants. Implanted sites were allowed to heal for 2, 8, 12, and 24 weeks, after which specimens were obtained for scanning electron microscope analysis using the freeze-fracture technique. Results The sol-gel coated implants recovered by freeze-fracture technique showed extensive bone growth from the endosteum along the implant surface. The bone was in direct contact with the CaP layer. The cement line-like layer was clearly demonstrated to be an intervening electron dense afibrillar layer between the CaP coat and the overlying newly deposited bone. The stability and osseointegration of the porous-surfaced implants seemed not to be affected by the osteoclastic resorption of CaP layer occurred during 24 weeks of healing. Conclusion Based on the findings in the long-term observation, the addition of a thin layer of CaP promotes an extensive osseointegrated interface between the porous-surfaced Ti-6Al-4V implants and the newly deposited bone.  相似文献   
7.
Medical devices, intended for blood contacting applications, undergo extensive in vitro testing followed by animal and clinical feasibility studies. Besides the use of materials known to be intrinsically blood-compatible, the surface of such devices is often modified with a coating in order to improve the performance characteristics during blood exposure. In vitro evaluation of blood-device interactions accompanies the product development cycle from the early design phase using basic material geometries until final finished-product testing. Specific test strategies can vary significantly depending on the end application, the particular study objectives and variables of interest, and cost. To examine the degree to which findings derived from two different in vitro approaches complement one another, this report contrasts findings from a simple multipass loop model with findings from a simulated cardiopulmonary bypass (CPB) model. The loop model consists of tubular test materials, with and without surface modification, formed into valved Chandler loops. The CPB model has an oxygenator with and without surface modification connected to a reservoir and a blood pump. The surface modifications studied in this report are the Carmeda® BioActive Surface and Duraflo® II heparin coatings. Common blood parameters in the categories of coagulation, platelets, hematology, and immunology were monitored in each model. Ideal models employ the optimal level of complexity to study the design variables of interest and to meet practical cost considerations. In the case of medical device design studies, such models should also be predictive of performance. In the more complex and realistic simulated CPB model, experimental design and cost factors prevented easy/optimum manipulation of critical variables such as blood donor (use of paired samples) and heparin level. Testing in the simpler loop model, on the other hand, readily offered manipulation of these variables, and produced findings which overlapped with observations from the more complex CPB model. Thus, the models described here complimented one another. Moreover, conclusions from consistent findings, such as favorable responses associated with the heparin coatings, between the two models were considered to be more robust.  相似文献   
8.
A series of surface-functionalized poly(ether ether ketone) (PEEK) films has been prepared by selective wet-chemistry; they are hydroxylated polymer (PEEK-OH) obtained by reduction, aminated polymer (PEEK-[]-NH2) prepared by coupling a diisocyanate reagent to PEEKOH (PEEK-[]-NCO) followed by hydrolysis, and carboxylated and aminocarboxylated polymers (PEEK-[]-GABA and PEEK-Lysine) resulting from the coupling of aminoacids to PEEK-[]-NCO. The aminated and carboxylated substrata promoted the adhesion and growth of CaCo2 cells in the presence of serum. Fibronectin (FN), an extra-cellular matrix protein, has been covalently fixed and/or adsorbed on various PEEK substrata, in the presence or not of a polymeric surfactant (Pluronic F68). The performances of the FN-grafted substrata (PEEK-[]-FN(1) and PEEK-[]-FN(2)) were significantly higher than those of reference substrata simply coated with FN (PEEK-OH(+FN)(1) and (2), PEEK-[]-NH2(+FN)(1) and (2)), considering the adhesion and spreading of CaCo2 cells in the absence of serum. Moreover, the stability of the adherent cells on the FN-adsorbed substrata dramatically depended on the experimental conditions applied during the PEEK coating with FN.  相似文献   
9.
Urethral catheters, widely used for the drainage of the bladder, are associated with most urinary tract infections (UTIs) that account for 40% of all episodes occurring in acute-care hospitals. This study aimed to develop a gentamicin-releasing catheter that effectively prevents UTIs for short-term catheterization. For physical loading of gentamicin, the urethral catheters were coated by the simple dipping method with poly(ethylene-co-vinyl acetate) (EVA) and EVA/poly(ethylene oxide) (PEO) blends containing gentamicin. By varying the molecular weight (MW) and contents of PEO in the blends, various catheter surfaces were produced. In vitro drug release studies demonstrated that all the coated catheters exhibited sustained release up to 7 days; however, the release pattern was significantly dependant on the coating layers. Of the coated catheters, EVA/PEO (MW = 100k)-coated catheters were utilized to evaluate the antibacterial activity using an inhibition zone test, since they showed a promising drug release behavior and had PEO-rich biocompatible surfaces. In accordance with drug release behavior, EVA/PEO-coated catheters exhibited antibacterial activities for 7 days against Proteus vulgaris, Staphylococcus aureus and Staphylococcus epidermidis. These results imply that the catheters coated with EVA/PEO have a potential for short-term catheterization.  相似文献   
10.
A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号