首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
儿科学   3篇
基础医学   8篇
内科学   1篇
神经病学   4篇
预防医学   1篇
药学   1篇
肿瘤学   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
3.
Membrane-associated guanylate kinases (MAGUKs) are modular adapter proteins that serve as scaffolding molecules and anchor channels and receptors via their PDZ (PSD-95, Dlg, Zo-1) domains. Calcium, calmodulin-associated serine/threonine kinase (CASK) is a MAGUK that is critical at synapses in the central nervous system and at cell-cell junctions because of its interactions with channels, receptors, and structural proteins. We show via confocal microscopy that CASK and another MAGUK, Discs Large (Dlg), are present at the mammalian neuromuscular junction in skeletal muscle. Immunoprecipitation data from mouse muscle show that CASK associates with Dlg, providing evidence of a MAGUK protein complex at this synapse. These data indicate that CASK and Dlg may act as a scaffold for organizing receptors and channels at the postsynaptic membrane of the neuromuscular junction.  相似文献   
4.
CASK (Ca2+, calmodulin-associated serine/threonine kinase) is an essential mammalian cell junction protein and is also crucial at Drosophila neuromuscular synapses. We have shown that CASK is present in mammalian skeletal muscle at the postsynaptic membrane of the neuromuscular junction. CASK interacts biochemically with channels at central synapses, and studies in cultured cells have led to proposed functions for CASK. However, in vivo functions of CASK in skeletal muscle remain unknown. To test hypotheses of CASK functions, we generated two lines of transgenic mice, which overexpress full-length and truncated CASK protein in skeletal muscle. Extensive analyses showed that overexpression of CASK protein did not affect the morphology or physiology of skeletal muscle, the morphology of the neuromuscular junction, or the levels or distribution of protein interactors. These results contrast with previous cell culture experiments and emphasize the importance of in vivo analysis of protein function.  相似文献   
5.
Khanna R  Sun L  Li Q  Guo L  Stanley EF 《Neuroscience》2006,138(4):1115-1125
The presynaptic N type Ca channel (CaV2.2) is associated with the transmitter release site apparatus and plays a critical role in the gating of transmitter release. It has been suggested that a distinct CaV2.2 long C terminal splice variant is targeted to the nerve terminal and is anchored at the release face by calcium/calmodulin-dependent serine protein kinase (CASK) and Munc-18-interacting protein (MINT), two modular adaptor proteins. We used the isolated chick ciliary ganglion calyx terminal together with two new antibodies (L4569, L4570) selective for CaV2.2 long C terminal splice variant to test these hypotheses. CaV2.2 long C terminal splice variant was present at the presynaptic transmitter release sites, as identified by Rab3a-interacting molecule (RIM) co-staining and quantitative immunocytochemistry. CASK was also present at the terminal both in conjunction with, and independent of its binding partner, MINT. Immunoprecipitation of CaV2.2 long C terminal splice variant from brain lysate coprecipitated CASK, confirming that these two proteins can form a complex. However, CASK was not colocalized either with CaV2.2 long C terminal splice variant or the transmitter release site marker RIM at the calyx terminal release face. Neither was MINT colocalized with CaV2.2 long C terminal splice variant. Our results show that native CaV2.2 long C terminal splice variant is targeted to the transmitter release sites at an intact presynaptic terminal. However, the lack of enrichment of CASK at the release site combined with the failure of this protein or its partner MINT to colocalize with CaV2.2 argues against the idea that these modular adaptor proteins anchor CaV2.2 at presynaptic nerve terminals.  相似文献   
6.
7.
Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1–7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1–13.2 and 15q15–q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation.  相似文献   
8.
Parkin is an E3 ligase that plays an important role in the ubiquitin/proteosome pathway responsible for protein degradation events. Mutations in parkin result in a loss-of-function and lead to Parkinson's disease, a progressive neurological disorder of movement. Presumably, this occurs due to the toxic build-up of proteins that are no longer effectively cleared/degraded by the parkin-dependent ubiqutin/proteosome pathway. To date, three types of proteins have been shown to interact with parkin. Firstly, the E2 ubiquitin conjugating proteins called UbcH7 and UbcH8 interact with parkin. Secondly, putative substrates interacting with parkin include a synaptic vesicle associated GTPase named CDCrel-1; a G protein-coupled receptor named Pael; a novel from of alpha-synuclein; and an alpha-synuclein interacting protein synphilin-1. Thirdly and more recently, a PDZ domain containing scaffolding protein CASK/Lin2 has been shown to interact with the PDZ binding motif of parkin. A network of PDZ-interacting proteins has potential to form a complex web of molecules that surround parkin and regulate its subcellular localisation and function.  相似文献   
9.
Abstract

Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer’s disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α′/β′ Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α′/β′ neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.  相似文献   
10.
Mutations in CASK cause a wide spectrum of phenotypes in humans ranging from mild X‐linked intellectual disability to a severe microcephaly (MC) and pontocerebellar hypoplasia syndrome. Nevertheless, predicting pathogenicity and phenotypic consequences of novel CASK mutations through the exclusive consideration of genetic information and population‐based data remains a challenge. Using whole exome sequencing, we identified four novel CASK mutations in individuals with syndromic MC. To understand the functional consequences of the different point mutations on the development of MC and cerebellar defects, we established a transient loss‐of‐function zebrafish model, and demonstrate recapitulation of relevant neuroanatomical phenotypes. Furthermore, we utilized in vivo complementation studies to demonstrate that the three point mutations confer a loss‐of‐function effect. This work endorses zebrafish as a tractable model to rapidly assess the effect of novel CASK variants on brain development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号