首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
基础医学   23篇
  2013年   23篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
The degradation of novel biodegradable segmented polyurethanes was investigated with a view to determining the cleavage points within the polymer backbones targeted by the enzyme chymotrypsin. While the materials were developed with specific enzyme cleavage sites designed into the polymer chains, the nature of their degradation had not yet been determined. In this work, two segmented polyurethaneureas containing L-phenylalanine residues in the chain extender and two control polymers were subjected to degradation in the presence of chymotrypsin. Samples were collected for analysis over a time period from 1 day to 8 weeks. The degradation products from these materials were isolated using solid phase extraction and reversed phase high pressure liquid chromatography, and identified using mass and tandem mass spectrometry. Three hard segment related degradation products were identified and provide important insight into the polyurethane backbone cleavage sites. Cleavage of urea, ester and urethane bonds were observed. The results confirmed that chymotrypsin was able to cleave ester bonds adjacent to phenylalanine residues contained within the novel chain extender.  相似文献   
2.
We designed and synthesized water-soluble biocompatible and biodegradable polymers composed of 2-methacryroyloxyethyl phosphorylcholine and oligo(L- or D-lactic acid) macromonomers to develop an injectable hydrogel matrix. Aqueous solutions containing the polymers with oligo(L-lactic acid) (OLLA) and oligo(D-lactic acid) (ODLA) chains underwent spontaneous gelation when mixed together. This was due to the formation of a stereocomplex between the OLLA and ODLA side-chains, which act as cross-linking components in the hydrogel. Therefore, the hydrogel could be re-dissolved in a buffer solution by hydrolysis of the oligo(lactic acid) chains. We obtained an injectable, biocompatible and degradable hydrogel, and we anticipate that it will be used in applications involving the controlled release of bioactive molecules and cell-based tissue engineering.  相似文献   
3.
Although the biodegradation of polyurethanes (PU) by oxidative and hydrolytic agents has been studied extensively, few investigations have reported on the combination of their effects. Since neutrophils (PMN) arrive at an implanted device first and release HOCl, followed by monocytederived macrophages (MDM) which have potent esterase activities and oxidants of their own, the combined effect of oxidative and hydrolytic degradation on radiolabeled polycarbonate-polyurethanes (PCNU)s was investigated and compared to that of a polyester-PU (PESU) and a polyether-PU (PEU). The PCNUs were synthesized with PCN (MW = 1000), and butanediol (14C-BD) and one of two diisocyanates, hexane-1,6-diisocyanate (14C-HDI) or methylene bis-p-phenyl diisocyanate (MDI). The PESU and PEU were synthesized using toluene-diisocyanate (14C-TDI), with polycaprolactone and polytetramethylene oxide as soft segments respectively, and ethylene diamine as the chain extender. The effect of pre-treatment with 0.1 mM HOCl for 1 week on the HDI-based PCNUs and both TDI-based PUs resulted in a significant inhibition of radiolabel release (RR) elicited by cholesterol esterase (CE), when compared to buffer alone, whereas the MDI-based PCNU showed a small but significant increase. When PMN were activated on the HDI-based PCNU surface with phorbol myristate acetate (PMA), HOCl was released for 3 h, and was almost completely abolished by sodium azide (AZ). Simultaneously, the PMN-elicited RR, shown previously to be due to the esterolytic cleavage by serine proteases, was inhibited ~75% by PMA-activation of the cells, but significantly increased relative to the latter when AZ was added. Both in vitro oxidation by HOCl and the release of HOCl by PMN were associated with the inhibition of RR and suggest perturbations between oxidative and hydrolytic mechanisms of biodegradation.  相似文献   
4.
The aim of this study was to examine the feasibility of using a new low-modulus biodegradable thermoplastic elastomer for in vivo application as a stent cover. The new polymer, a thermoplastic elastomer, consists of a three-armed co-polymer of poly(lactide)acid (PLLA), poly(trimethylene carbonate) (PTMC) and poly(caprolactone) (PCL). A degradation study was performed in a buffer solution at 37°C for 4 and 6 weeks. The effect of degradation on mechanical properties was studied by stress-strain measurements and explained by using modulated DSC, GPC and mass measurements. A tapered block of PLLA and trimethylene carbonate connecting the crystalline outer part and the inner elastic part was highly susceptible to hydrolysis and caused rapid degradation and subsequent loss of mechanical properties. Random chain scission and homogenous hydrolysis resulted in a loss in mass and molecular weight. After 6 weeks of in vitro hydrolysis the molecular weight had decreased 54% and the elongation-at-break dropped from more than 300% to 90%. A medium free cell seeding study showed that endothelial cells adhered well to the polymeric material. An indicative animal study with the polymer acting as a stent cover showed very low levels of inflammation; however, pronounced neointima thickening was observed which was probably due to the premature failure of the material.  相似文献   
5.
A novel biodegradable poly(sebacate-glycerol-citrate) (PGSC) elastomer with functional groups was prepared in this study. First, moldable mixtures were obtained by mixing citric acid with the poly(glycerol-sebacate) (PGS) pre-polymers synthesized in our lab. The PGSC elastomers were obtained from moldable mixtures that were thermally cured in the moulds. Then, the structures, compositions and properties of the elastomers were studied by Fourier transformation infrared spectroscopy (FT-IR), swelling test, differential scanning calorimeter (DSC), tensile test, water contact angle measurement, water absorption experiments and a in vitro degradation test. It showed that the hydroxyl groups remained in the elastomers which would endow the polymer chains with functionality such as good surface modification. By controlling the thermal curing time, the compositions of the PGSC elastomers were adjusted for different mechanical and biodegradable properties. Therefore, PGSC elastomers might be used as anti-conglutination films in surgery, guided tissue regeneration membranes and drug-delivery matrices.  相似文献   
6.
Amphiphilic guar gum grafted with poly(ε-caprolactone) (GG-g-PCL) was fabricated as a drug-delivery carrier using microwave irradiation. The structure of the GG-g-PCL co-polymer was characterized by 1H-NMR spectroscopy. By microwave irradiation, GG-g-PCL with high grafting percentage (>200%) was obtained in a short reaction time. The GG-g-PCL co-polymer is capable of self-assembling into nanosized spherical micelles in aqueous solution with the diameter of around 75–135 nm and 60–100 nm, as determined by DLS and TEM, respectively. The critical micelle concentration (CMC) of GG-g-PCL was found to be approx. 0.56 mg/l in a phosphate buffer solution. The drug-release profile showed that the GG-g-PCL micelles provided an initial burst release followed by a sustained release of the entrapped hydrophobic model drug, ketoprofen, over a period of 10–68 h. Under physiological conditions, the GG-g-PCL co-polymer hydrolytically degraded into lower-molecular-weight fragments within a 7-week period. These results suggest that the GG-g-PCL micelles could be used as a nanocarrier for in vitro controlled drug delivery.  相似文献   
7.
Abstract —Polycarbonate based polyurethanes were synthesized with varying hard segment content as well as hard segment chemistry based on three different diisocyanates,1,6-hexane diisocyanate (HDI), 4,4′-methylene bisphenyl diisocyanate (MDI) and 4,4-methylene biscyclohexyl diisocyanate (HMDI). The surface chemistry and morphology were characterized using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The polymers were incubated with cholesterol esterase (CE) in a phosphate buffer solution at 37°C over 10 weeks. XPS results showed that the surface chemistry changed as the size and chemistry of the hard segment varied within the materials. AFM images exhibited distinctive surface morphologies for all polymers, and this was particularly apparent with changes in the hard segment chemistry. The results showed that the surface of HDI polymers consisted of relatively stiff rod-like structures, which corresponded to the soft segment domains. Polymers with a higher HDI content exhibited a dense top layer containing a relatively higher hard segment component, covering the sub-surface matrix of rod like structures. The MDI based polyurethane had large aggregates on its top surface, which corresponded to the aggregation of harder components. The HMDI based polycarbonate-urethane presented a relatively homogeneous surface where no phase separation could be detected. The relative differences in hard and soft segment content in their surface structure was supported by XPS findings. The analysis of the biodegradation results, concluded that enzyme catalyzed biodegradation within these materials was initiated in amorphous soft segment regions located in the region of the interface between hard and soft segments. A higher hard segment content at the surface contributed significantly to an increase in biostability. The findings provided an enhanced understanding for the role of surface molecular structure in the enzyme catalyzed biodegradation of polyurethanes.  相似文献   
8.
A combinatorial library of biodegradable polyarylates derived from L-tyrosine was synthesized and characterized. These polyarylates are A–B-type co-polymers consisting of a cyclic dipeptide and a diacid. General structure–property correlations were established by comparing aryl diacid co-polymers and aliphatic diacid co-polymers. The synthesized polymers were characterized by FT-IR, 1H-NMR, 13C-NMR for their chemical structure, by DSC and TGA for their thermal characteristics and by GPC for their molecular weight distribution. The T g of polymers decreased and water absorption increased with increasing number of methylene groups in the polymer backbone. Using a cyclic peptide derived from L-tyrosine as co-monomer we obtained optimum bioactivity and biocompatibility. Combinatorial approaches of designing material increased effectively the number of available degradable polymers which can be used in different biomaterials applications. General structure–property correlation makes polymers' properties varied in a predictable and systematic fashion. Accelerated hydrolytic degradation studies of polyarylates were performed at 70°C in acid and alkali medium. The degradation rates of polymers were in accordance with their water absorption. The degradation rates of samples in acid medium were lower than those in alkali medium.  相似文献   
9.
A family of injectable, biodegradable and thermosensitive co-polymer nanoparticle (NP) hydrogels based on mPEG-b-POA-b-mPEG, which was synthesized from mono-methoxy poly(ethylene glycol) (mPEG) and poly(octadecanedioic anhydride) (POA), was investigated in this paper. It was found that the aqueous dispersions of these NPs underwent a reversible gel–sol transition upon temperature change. By using paclitaxel and Bovine serum albumin (BSA) as model drugs, we noticed that the in vitro releases of both in situ gel-forming formulations were sustained and no initial burst releases were observed for 7 days. In vitro cytotoxicity tests via MTT assay indicate that mPEG-b-POA-b-mPEG NPs are non-toxic to normal mouse lung fibroblast cells (L929). The in vivo hydrogel formation and in vivo biocompatibility of co-polymer NP hydrogel were also investigated and the results further validate the biocompatible nature of co-polymer NP hydrogel. In conclusion, our mPEG-b-POA-b-mPEG NP hydrogel is able to control the release of incorporated drug for longer duration.  相似文献   
10.
Chitosan, as an example of natural macromolecular biomaterials, was used to fabricate highly porous chitosan scaffolds with microtubules having a tubular orientation structure using the unidirectional freeze-drying method. The porous structure of the scaffolds was characterized via scanning electron microscopy. The factors that affect the porous structure of the scaffolds, such as the concentration of chitosan solution and addition of glutaraldehyde as cross-linking agent, have been extensively studied in order to find a facile and efficient way to control the porosity, tubular morphology and orientation of the microtubules. The properties of the chitosan scaffolds, including water absorption ability, compressive strength, protein adsorption and in vitro enzymatic biodegradation in the presence of lysozyme, were also investigated. In vitro cell-culture results showed that the chitosan scaffold was non-toxic to cartilage cells and the cells could spread and grow well on the scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号