首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
基础医学   13篇
外科学   16篇
  2021年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Passenger leukocytes have been suggested to be both pro-tolerant and immunogenic. The opportunity to evaluate the role of allogeneic passenger leukocytes in humans was presented by a 47-year-old man who donated bone marrow to his HLA-identical leukemic sister. Eleven years later he developed renal failure. The sister's marrow was noted to be 100% XY karyotype and free of malignancy. She donated a kidney to her brother. Immunosuppression was tapered following transplantation. After 6 months, the recipient was on monotherapy sirolimus, 1 mg every third day. A surveillance biopsy was normal and sirolimus was stopped. Eight weeks later, he presented with severe rejection that reversed with Thymoglobulin. Renal function returned to baseline and has been stable on conventional immunosuppression.  相似文献   
2.
The presence of cells or tissues from two individuals, chimeras, or the presence of cells and tissues that include the gonads, tetragametic chimerism can be detected by the analysis of cytogenetics and analysis of polymorphic genetic markers, using patterns of pedigree inheritance. These methodologies include determination of sex chromosomes, major histocompatibility complex (MHC) polymorphisms and panels of short tandem repeats (STRs) that include mitochondrial DNA markers. Studies routinely involve cases of temporal chimerism in blood transfusion, or following allotransplantation to measure the outcome of the organ, lymphopoietic tissues or bone marrow grafts. Demonstration of persistent chimerism is usually discovered in cases of inter-sexuality due to fusion of fraternal twins or in cases of fusion of embryos with demonstrable allogeneic monoclonality of blood which, excluded maternity or paternity when blood alone is used as the source of DNA. In single pregnancies it is possible to produce two kinds of microchimerism: feto-maternal and materno-fetal, but in cases of fraternal twin pregnancies it is possible to identify three different kinds which are related to cases of vanishing twins that can be identified during pregnancy by imaging procedures; (1) hematopoietic, (2) gonadal, and (3) freemartins when the twins have different sex and the individual born is a female with either gonadal or both gonadal and hematopoietic tissues. Fraternal twin pregnancies can also produce fusion of embryos. Such cases could be of different sex presenting with inter-sexuality or in same sex twins. One of such cases, the best studied, showed evidence of chimerism and tetragametism. In this regard, the case was studied because of disputed maternity of two of her three children. All tissues studied, except for the blood, demonstrated four genetic components but only two in her blood of four possible showed allogeneic monoclonality consistent with the interpretation that her blood originated from one hematopoietic stem cell. Also, microchimerism, due to traffic of cells via materno-fetal or feto-maternal has been prompted by reports of their potential association with the development of autoimmune disorders including systemic lupus erythematosus (SLE) and systemic sclerosis, and in allotransplantation. In addition, their relevance of chimerism in the positive and negative selection of T cells in the thymus has not been addressed. T lymphocytes play a central role in controlling the acquired immune response and furthermore serve as crucial effector cells through antigen specific cytotoxic activity and the production of soluble mediators. Central tolerance is established by the repertoire selection of immature T lymphocytes in the thymus, avoiding the generation of autoreactive T cells. Expression of chimeric antigens in the thymus could modify the generation of specific T cell clones in chimeric subjects and these mechanisms could be important in the induction of central tolerance against foreign antigens important in allo-transplantation. In this review, we discuss the genetics of chimerism and tetragametism and its potential role in thymic selection and the relevance in allotransplantation and autoimmune disorders. This review is dedicated to the memory of Robert A. Good, MD, PhD, an outstanding physician and scientist, one discoverer of the functions of the Thymus in immunobiology and the pioneer of human bone marrow allotransplantation. Presented at the First Robert A Good Society Symposium, St. Petersburg, FL 2006.  相似文献   
3.
CD4+CD25+ regulatory T cells mediate acquired transplant tolerance   总被引:2,自引:0,他引:2  
The Holy Grail of clinical organ transplantation is the safe induction of allograft tolerance. Transplant tolerance has been successfully induced in animal models. Since T cells play a pivotal role in graft rejection, modulating T cell function has been the primary focus of studies aimed at inducing transplant tolerance. Rodent models of transplant tolerance induction include central deletion and peripheral mechanisms involving activation-induced cell death (AICD), anergy, immune deviation, and production of regulatory T cells. These mechanisms are not mutually exclusive. Although clonal deletion and anergy limit self-reactive T cells in the thymus, these mechanisms alone are not sufficient for controlling self-reactive T cells in the periphery. There is now evidence that the adult animal harbors two functionally distinct populations of CD4(+) T cells; one mediates autoimmune disease and the other dominantly inhibits it. The latter cells express CD4, CD25 and CTLA-4. These thymus-derived T cells have recently been shown to mediate the induction and maintenance of transplant tolerance. These CD4(+)CD25(+) T cells are similar in origin, phenotype, and function to those that maintain natural self-tolerance and T cell homeostasis in the periphery. Against this background, is it possible that alloantigen specific regulatory T cells might be generated and expanded ex vivo before organ transplantation and then infused to induce long-term tolerance, perhaps without the need for chronic immunosuppression?  相似文献   
4.
Allorecognition     
Until recently, the vigorous T-cell response via the direct pathway has overshadowed studies involving the indirect pathway. Thus, while the direct pathway has previously been considered to be the main driving force in alloimmune responses, there is an increasing body of data to support a prominent role of the indirect pathway in transplant rejection. Most importantly, the direct antidonor alloresponse diminishes with time after transplantation, possibly due to the tolerogenic effects of alloantigen presentation by the parenchymal cells of the transplant. In contrast, the indirect alloresponse is likely to be permanently active, due to traffic of recipient dendritic cells (DCs) through the graft. The challenge that this poses in the pursuit of clinical transplant tolerance is how to induce tolerance in T cells with indirect allospecificity.  相似文献   
5.
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen‐presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide‐specific responses. In this study, we explored the contributions of naïve and memory CD4+ T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4+ T cells, both naturally occurring and induced by sensitization with multiple third‐party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4+CD25+ T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.  相似文献   
6.
Chitinases are enzymes that degrade chitin, the second most abundant polymer in nature. They are ubiquitous among living organisms where they play a role in development, food-digestion and innate immunity. We have cloned and characterized the first cnidarian chitinase cDNA from the hydroid Hydractinia. The Hydractinia chitinase exhibits a typical secreted family 18 hydrolases primary structure. In situ hybridization and RT-PCR experiments showed that it is exclusively expressed in ectodermal tissues of the animal, only following metamorphosis while undetectable in embryonic and larval stages. Most prominent expression was observed in the stolonal compartment of colonies, structures that are covered by a chitinous periderm. Chitinase mRNA was detected in new branching points along stolons and in hyperplastic stolons indicating a role of the enzyme in pattern formation and allorecognition. It was also expressed in polyps where it was mostly restricted to their basal portion. This expression pattern suggests that HyChit1 also fulfills a role in host defense, probably against fungal and nematode pathogens. Endodermal expression of HyChit1 has never been observed, suggesting that the enzyme does not participate in food-digestion.  相似文献   
7.
Allorecognition is the capability of an organism to recognize its own or related tissues. The colonial ascidian Botryllus schlosseri, which comprises five genetically distinct and divergent species (Clades A-E), contains two adjacent genes that control allorecognition: fuhcsec and fuhctm. These genes have been characterized extensively in Clade A and are highly polymorphic. Using alleles from 10 populations across the range of Clade A, we investigated the type and strength of selection maintaining this variation. Both fuhc genes exhibit higher within-population variation and lower population differentiation measures (FST) than neutral loci. The fuhc genes contain a substantial number of codons with >95% posterior probability of dN/dS > 1. fuhcsec and fuhctm also have polymorphisms shared between Clade A and Clade E that were present prior to speciation (trans-species polymorphisms). These results provide robust evidence that the fuhc genes are evolving under balancing selection.  相似文献   
8.
It is well established that iNKT cells can be activated by both exogenous and a limited number of endogenous glycolipids. However, although iNKT cells have been implicated in the immune response to transplanted organs, the mechanisms by which iNKT cells are activated in this context remain unknown. Here we demonstrate that iNKT cells are not activated by allogeneic cells per se, but expand, both in vitro and in vivo, in the presence of a concomitant conventional T-cell response to alloantigen. This form of iNKT activation was found to occur independently of TCR-glycolipid/CD1d interactions but rather was a result of sequestration of IL-2 produced by conventional alloreactive T cells. These results show for the first time that IL-2, produced by activated conventional T cells, can activate iNKT cells independently of glycolipid/CD1d recognition. Therefore, we propose that the well-documented involvement of iNKT cells in autoimmunity, the control of cancer as well as following transplantation need not involve recognition of endogenous or exogenous glycolipids but alternatively may be a consequence of specific adaptive immune responses.  相似文献   
9.
The intercellular transfer of many molecules, including the major histocompatibility complexes (MHC), both class I and II, costimulatory and adhesion molecules, extracellular matrix organization molecules as well as chemokine, viral and complement receptors, has been observed between cells of the immune system. In this review, we aim to summarize the findings of a large body of work, highlight the molecules transferred and how this is achieved, as well as the cells capable of acquiring molecules from other cells. Although a physiological role for this phenomenon has yet to be established we suggest that the exchange of molecules between cells may influence the immune system with respect to immune amplification as well as regulation and tolerance. We will discuss why this may be the case and highlight the influence intercellular transfer of MHC molecules may have on allorecognition and graft rejection.  相似文献   
10.
Activated human T cells express major histocompatibility complex class II proteins, and their potential to present antigens to T cell clones has been documented extensively. The effect of such T-T presentation on responder T cell clones has been shown to be the induction of tolerance, sometimes accompanied by activation. To investigate whether freshly isolated responder T cells are also susceptible to such induction of tolerance by activated T cells functioning as antigen-presenting cells (APC), we have used the capability of unprimed ex vivo T cells to respond in a proliferation assay in vitro to alloligands on professional APC. We show that purified human T cells ex vivo, when exposed to alloligand on activated T cells for primary allorecognition In vitro, fail to mount a proliferative response. Priming of responder CD4+ T cells with alloligand expressed on activated T cells results in the induction of nonresponsiveness to a subsequent challenge by competent allo-APC. This ability of activated, HLA-DR+ T cells to induce nonresponsiveness to subsequent challenge in bulk CD4+ T cell populations ex vivo has interesting implications for infections involving T cells such as human immunodeficiency virus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号