首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   5篇
  国内免费   6篇
耳鼻咽喉   126篇
儿科学   3篇
基础医学   77篇
口腔科学   1篇
临床医学   5篇
神经病学   24篇
特种医学   16篇
外科学   4篇
综合类   15篇
药学   7篇
  2022年   4篇
  2021年   11篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   13篇
  2015年   9篇
  2014年   7篇
  2013年   10篇
  2012年   21篇
  2011年   12篇
  2010年   9篇
  2009年   16篇
  2008年   11篇
  2007年   7篇
  2006年   10篇
  2005年   12篇
  2004年   12篇
  2003年   8篇
  2002年   6篇
  2001年   8篇
  2000年   9篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   10篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1977年   1篇
  1976年   4篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
同时性后半规管与水平半规管性良性位置性眩晕   总被引:6,自引:1,他引:5  
目的:探讨同时性后半规管与水平半规管性良性位置性眩晕(混合性良性位置性眩晕)的诊治方法。方法:联合应用Epley手法和Barbecue翻滚法对4例患者进行治疗,两次治疗间隔1d。结果:4例患者眩晕症状完全消失,随访至今无复发。结论:混合性良性位置性眩晕兼有后半规管与水平半规管性良性位置性眩晕的临床表现,联合采用Epley手法和Barbecue翻滚法治疗该病是可行的。  相似文献   
2.
This brief review highlights problems in the interpretation of results about perceived postural roll-tilt of human subjects undergoing roll-tilt around their naso-occipital axis, when visual stimuli are used as a means of indicating perception. The otolithic stimulus, which causes the changes in perceived posture, also causes the eyes to roll (or tort). In turn, the altered torsional position of the eye causes the perceived orientation of visual stimuli to change. Consequently, indicators of postural perception, which rely on visual stimuli, are a confounded combination of two factors; the person's perceived postural roll-tilt, and the effect of the otolithic stimulus on ocular torsional position. Consequently, setting of a visual stimulus do not permit direct unambiguous interpretation of a subject's perceived postural roll-tilt.  相似文献   
3.
Summary We habituated the dominant time constant of the horizontal vestibuloocular reflex (VOR) of rhesus and cynomolgus monkeys by repeated testing with steps of velocity about a vertical axis and adapted the gain of the VOR by altering visual input with magnifying and reducing lenses. After baseline values were established, the nodulus and ventral uvula of the vestibulocerebellum were ablated in two monkeys, and the effects of nodulouvulectomy and flocculectomy on VOR gain adaptation and habituation were compared. The VOR time constant decreased with repeated testing, rapidly at first and more slowly thereafter. The gain of the VOR was unaffected. Massed trials were more effective than distributed trials in producing habituation. Regardless of the schedule of testing, the VOR time constant never fell below the time constant of the semicircular canals (5 s). This finding indicates that only the slow component of the vestibular response, the component produced by velocity storage, was habituated. In agreement with this, the time constant of optokinetic after-nystagmus (OKAN) was habituated concurrently with the VOR. Average values for VOR habituation were obtained on a per session basis for six animals. The VOR gain was adapted by natural head movements in partially habituated monkeys while they wore ×2.2 magnifying or ×0.5 reducing lenses. Adaptation occurred rapidly and reached about ±30%, similar to values obtained using forced rotation. VOR gain adaptation did not cause additional habituation of the time constant. When the VOR gain was reduced in animals with a long VOR time constant, there were overshoots in eye velocity that peaked at about 6–8 s after the onset or end of constant-velocity rotation. These overshoots occurred at times when the velocity storage integrator would have been maximally activated by semicircular canal input. Since the activity generated in the canals is not altered by visual adaptation, this finding indicates that the gain element that controls rapid changes in eye velocity in the VOR is separate from that which couples afferent input to velocity storage. Nodulouvulectomy caused a prompt and permanent loss of habituation, returning VOR time constants to initial values. VOR gain adaptation, which is lost after flocculectomy, was unaffected by nodulouvulectomy. Flocculectomy did not alter habituation of the VOR or of OKAN. Using a simplified model of the VOR, the decrease in the duration of vestibular nystagmus due to habituation was related to a decrement in the dominant time constant of the velocity storage integrator (1/h 0). Nodulouvulectomy, which reversed habituation, would be effected by decreasing h 0, thereby increasing the VOR time constant. Small values of h 0 would cause velocity storage to approach an ideal integrative process, leading the system to become unstable. By controlling the VOR time constant through habituation, the nodulus and uvula can stabilize the slow component of the VOR. VOR gain adaptation was related to a modification of the direct vestibular path gain g 1, without altering the coupling to velocity storage g 0 or its time constant (1/h 0). The mismatched direct- and indirect-pathway gains simulated the overshoots in the dynamic response to a step in velocity, that were observed experimentally. We conclude that independent distributed elements in the VOR modify its dynamic response, under control of separate parts of the vestibulocerebellum.  相似文献   
4.
In decerebrate cats, rotation about the longitudinal axis of the animal, leading to sinusoidal stimulation of labyrinth receptors, produces a tonic contraction of limb extensors during side-down tilt ( responses) and of dorsal neck extensors during side-up tilt ( responses). These changes in posture are mediated, at least in part, by lateral vestibular nucleus (LVN) neurons, with response characteristics to stimulation of macular and/or canal receptors that have so far been evaluated at the level of either unidentified vestibulospinal (VS) neurons or vestibulo-collic neurons projecting to the upper cervical cord. In the present study we investigated the dynamics of the responses of VS neurons projecting to the lumbosacral segments of the spinal cord to increasing frequencies of tilt (from 0.026 to 0.32 Hz, ±10°). All the recorded units showed an average phase lead with respect to position of +25.6±5.5° (SE) at the tilt frequency of 0.026 Hz. Most of these neurons (n=32) were particularly activated during side-down tilt ( responses) and showed either a stable phase or an increase in phase lead of the responses with increasing frequency of tilt. At the tilt frequency of 0.026 Hz, the smaller the phase lead of the responses, the larger was the response gain. Moreover, the smaller the phase lead of the responses at that frequency of tilt, the smaller the increase in gain but the larger was the increase in lead of the responses obtained by increasing the stimulation frequency up to 0.32 Hz. Through this set of finely organized changes in unit response characteristics, the overall output of this population of neurons increased, while the phase angle of the responses reached the mean value of +64.9±2.6° (SE), thus becoming more related to the velocity than to the positional signal. The remaining units (n=7), which were mainly activated during side-up tilt ( responses), displayed an increase in phase lag of the responses to increasing frequency of stimulation, which reached the mean value of-118.9±14.5° (SE) at 0.32 Hz. The differences in the dynamic properties of these VS neurons projecting to the lumbosacral cord, with respect to those of previously recorded populations of VS neurons, are discussed.  相似文献   
5.
The purpose of this paper is to review the kinematics and dynamics of the vestibulo-ocular reflex (VOR) in three dimensions. We give a brief, didactic tutorial on vectors and matrices and their importance as representational schemes for describing the kinematics and dynamics of the angular and linear accelerations that activate the vestibular system. We show how the vectors associated with angular and linear head accelerations are transformed by the peripheral and central vestibular systems to drive the oculomotor system to produce eye movements in three-dimensional space. We also review critical questions and controversies related to the compensatory and orientation behavior of the VOR. One such question is how the central vestibular system distinguishes tilts of the head, which generate interaural linear acceleration from translations along the interaural axis. Another question is how the velocity-position integrator is implemented centrally. The review has been placed in the context of a model that explains the behavior of the VOR in three dimensions. Model processes have been related to peripheral and central neural behavior in order to gain insight into the nature of the three-dimensional organization and the controversial questions that are addressed.  相似文献   
6.
We evaluated the human binocular response to roll motion in the dark and during visual fixation with horizontal convergence. Six normal human subjects were exposed to manually driven, whole-body rotation about an earth-vertical, naso-occipital axis, under two conditions: (I) oscillation at 0.4 Hz (peak velocity 69+/-3.8 degree/s) in the dark, and whilst fixating an axial light-emitting diode at 48 cm ('near') and at 206 cm ('far'); (II) constant velocity rotation (56.5+/-3.1 degree/s) for 40 s, clockwise and counter-clockwise, in the dark, and sudden stops. Eye and head movements were monitored using scleral search coils. In head-fixed, angular velocity coordinates roll motion always evoked conjugate ocular torsion, with small conjugate horizontal and disconjugate vertical components. The resultant binocular eye responses were rotations about convergent axes. During oscillation with target fixation the convergence of the rotation axes was larger than that predicted by target geometry, producing disconjugate oscillations of vertical gaze about the target ('skewing'). Fast-phase eye movements were primarily resetting rotations about the same convergent rotation axes as the slow phases, but the small vertical velocity components had oscillatory, asymmetrical profiles. In response to velocity steps the slow-phase eye velocity decayed exponentially with time constants of 4.5+/-1.5 s for the torsional component and 5.8+/-1.9 s for the 'vertical vergence' component (right eye-left eye recordings). We conclude that in normal human subjects dynamic vertical canal stimulation with horizontal gaze convergence evokes rotation of the eyes about convergent axes and a small skewing of the eyes.  相似文献   
7.
Second-order vestibular neurons form the central links of the vestibulo-oculomotor three-neuron arcs that mediate compensatory eye movements. Most of the axons that provide for vertical vestibulo-ocular reflexes ascend in the medial longitudinal fasciculus (MLF) toward target neurons in the oculomotor and trochlear nuclei. We have now determined the morphology of individual excitatory second-order neurons of the anterior semicircular canal system that course outside the MLF to the oculomotor nucleus. The data were obtained by the intracellular horseradish peroxidase method. Cell somata of the extra-MLF anterior canal neurons were located in the superior vestibular nucleus. The main axon ascended through the deep reticular formation beneath the brachium conjunctivum to the rostral extent of the nucleus reticularis tegmenti pontis, where it crossed the midline. The main axon continued its trajectory to the caudal edge of the red nucleus from where it coursed back toward the oculomotor nucleus. Within the oculomotor nucleus, collaterals reached superior rectus and inferior oblique motoneurons. Some axon branches recrossed the midline within the oculomotor nucleus and reached the superior rectus motoneuron subdivision on that side. Since these neurons did not give off a collateral toward the spinal cord, they were classified as being of the vestibulo-oculomotor type and are thought to be involved exclusively in eye movement control. The signal content and spatial tuning characteristics of this anterior canal vestibulo-oculomotor neuron class remain to be determined.  相似文献   
8.
Horizontal and vertical eye movements were recorded in alert pigmented rats using chronically implanted scleral search coils or temporary glue-on coils to test the dependence of the vestibulo-ocular reflex (VOR) upon rotation axis and body orientation. The contributions of semicircular-canal versus otolith-organ signals to the VOR were investigated by providing canal-only (vertical axis) and canal plus otolith (horizontal axis) stimulation conditions. Rotations that stimulated canals only (upright yaw and nose-up roll) produced an accurate VOR during middle- and high-frequency rotations (0.2-2 Hz). However, at frequencies below 0.2 Hz, the canal-only rotations elicited a phase-advanced VOR. The addition of a changing gravity stimulus, and thus dynamic otolith stimulation, to the canal signal (nose-up yaw, on-side yaw, and upright roll) produced a VOR response with accurate phase down to the lowest frequency tested (0.02 Hz). In order to further test the dependence of the VOR on gravitational signals, we tested vertical VOR with the head in an inverted posture (inverted roll). The VOR in this condition was advanced in phase across all frequencies tested. At low frequencies, the VOR during inverted roll was anticompensatory, characterized by slow-phase eye movement in the same direction as head movement. The substantial differences between canalonly VOR and canal plus otolith VOR suggest an important role of otolith organs in rat VOR. Anticompensatory VOR during inverted roll suggests that part of the otolith contribution arises from static tilt signals that are inverted when the head is inverted.  相似文献   
9.
The vestibulo-ocular reflex (VOR) was studied in three squirrel monkeys subjected to rotations with the head either centered over, or displaced eccentrically from, the axis of rotation. This was done for several different head orientations relative to gravity in order to determine how canal-mediated angular (aVOR) and otolithmediated linear (lVOR) components of the VOR are combined to generate eye movement responses in three-dimensional space. The aVOR was stimulated in isolation by rotating the head about the axis of rotation in the upright (UP), right-side down (RD), or nose-up (NU) orientations. Horizontal and vertical aVOR responses were compensatory for head rotation over the frequency range 0.25–4.0 Hz, with mean gains near 0.9. The horizontal aVOR was relatively constant across the frequency range, while vertical aVOR gains increased with increasing stimulation frequency. In the NU orientation, compensatory torsional aVOR responses were of relatively low gain (0.54) compared with horizontal and vertical responses, and gains remained constant over the frequency range. When the head was displaced eccentrically, rotation provided the same angular stimuli but added linear stimulus components, due to the centripetal and tangential accelerations acting on the head. By manipulating the orientation of the head relative to gravity and relative to the axis of rotation, the lVOR response could be combined with, or isolated from, the aVOR response. Eccentric rotation in the UP and RD orientations generated aVOR and lVOR responses which acted in the same head plane. Horizontal aVOR-lVOR interactions were recorded when the head was in the UP orientation and facing toward (nose-in) or away from (nose-out) the rotation axis. Similarly, vertical responses were recorded with the head RD and in the nose-out or nose-in positions. For both horizontal and vertical responses, gains were dependent on both the frequency of stimulation and the directions and relative amplitudes of the angular and linear motion components. When subjects were positioned nose-out, the angular and linear stimuli produced synergistic interactions, with the lVOR driving the eyes in the same direction as the aVOR. Gains increased with increasing frequency, consistent with an addition of broad-band aVOR and high-pass lVOR components. When subjects were nose-in, angular and linear stimuli generated eye movements in opposing directions, and gains declined with increasing frequency, consistent with a subtraction of the lVOR from the aVOR. This response pattern was identical for horizontal and vertical eye movements. aVOR and lVOR interactions were also assessed when the two components acted in orthogonal response planes. By rotating the monkeys into the NU orientation, the aVOR acted primarily in the roll plane, generating torsional ocular responses, while the translational (lVOR) component generated horizontal or vertical ocular responses, depending on whether the head was oriented such that linear accelerations acted along the interaural or dorsoventral axes, respectively. Horizontal and vertical lVOR responses were negligible at 0.25 Hz and increased dramatically with increasing frequency. Comparison of the combined responses (UP and RD orientations) with the isolated aVOR (head-centered) and lVOR (NU orientation) responses, indicates that these VOR components sum in a linear fashion during complex head motion.  相似文献   
10.
Summary The behavior of single vestibular nerve fibers from the lateral semicircular canal was recorded during sinusoidal oscillations of the head, during optokinetic stimulation with the head stationary, and during spontaneous oculomotor behavior in the alert monkey. The response of similar fibers to adequate vestibular stimulation was also studied in some of the animals under deeply anesthetized conditions. In the alert animals all units were spontaneously active and their discharge was modulated only by adequate vestibular stimulation. Ipsilateral horizontal rotations of the head were excitatory for all units. No modification of this basic vestibular response by visual stimulation including full-field striped drum rotation was observed. Furthermore no correlation of unit activity with oculomotor function including voluntary saccadic and pursuit eye movements was found in any of the units. The regularity of spontaneous discharge was the most consistent characteristic that differentiated the unit response into types. Most units were very regular in discharge, but a few were very irregular. The averaging of unit discharge over several cycles of oscillatory head rotation showed that the irregular type units were also consistently modulated by adequate vestibular stimulation. Both regular and irregular type units were found in the anesthetized animals. Unimodal distributions of the quantitative values for unit resting discharge rate, sensitivity, and phase relationship were found. The distributions for these three parameters were similar in the units recorded in the anesthetized animals. Thus at least these characteristics of semicircular canal response seem not to be affected by the vestibular efferent system which should be altered or eliminated in the case of the anesthetized animals.Research supported by NIH Grant EY0995-04.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号