首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
基础医学   1篇
临床医学   9篇
内科学   1篇
预防医学   1篇
药学   16篇
  2022年   1篇
  2018年   1篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2009年   1篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有28条查询结果,搜索用时 78 毫秒
1.
The modification of surface properties of biodegradable poly(lactide-co-glycolide) (PLGA) and model polystyrene nanospheres by poly(lactide)-poly(ethlene glycol) (PLA:PEG) copolymers has been assessed using a range of in vitro characterization methods followed by in vivo studies of the nanospheres biodistribution after intravenous injection into rats. Coating polymers with PLA:PEG ratio of 2:5 and 3:4 (PEG chains of 5000 and 2000 Da, respectively) were studied. The results reveal the formation of a PLA: PEG coating layer on the particle surface resulting in an increase in the surface hydrophilicity and decrease in the surface charge of the nanospheres. The effects of addition of electrolyte and changes in pH on stability of the nanosphere dispersions confirm that uncoated particles are electrostatically stabilized, while in the presence of the copolymers, steric repulsions are responsible for the stability. The PLA:PEG coating also prevented albumin adsorption onto the colloid surface. The evidence that this effect was observed for the PLA:PEG 3:4 coated nanospheres may indicate that a poly(ethylene glycol) chain of 2000 Da can provide an effective repulsive barrier to albumin adsorption. The in vivo results reveal that coating of PLGA nanospheres with PLA:PEG copolymers can alter the biodistribution in comparison to uncoated PLGA nanospheres. Coating of the model polystyrene nanospheres with PLA:PEG copolymers resulted in an initial high circulation level, but after 3 hours the organ deposition data showed values similar to uncoated polystyrene spheres. The difference in the biological behaviour of coated PLGA and polystyrene nanospheres may suggest a different stability of the adsorbed layers on these two systems. A similar biodistribution pattern of PLA:PEG 3:4 to PEG 2:5 coated particles may indicate that poly(ethylene glycol) chains in the range of 2000 to 5000 can produce a comparable effect on in vivo behaviour.  相似文献   
2.
Purpose. Due to the importance of drug-polymer interactions in, inter alia, drug loading/release, supramolecular assemblies and DNA delivery for gene therapy, the aim of this study was therefore to establish the mechanism of interaction between a model polymer (Polyacrylic acid, PAA) and a model drug (procaine HCl). Methods. This was performed by studying the effect of salt (KCl) concentration on their heat released values using Isothermal Titration Microcalorimetry (ITM). The integrated released heat data were computer fitted to a one class binding model and the thermodynamic parameters (Kobs, H, and N) were determined. Results. As the KC1 concentration was increased, Kobs decreased thus establishing the salt dependence of the interaction. The linear variation of Gobs with Sobs indicated that their interaction was entropically driven. The stoichiometry of the interaction was calculated to be one procaine molecule per monomer of PAA. Dissection of the total observed free energy at each KC1 concentration indicated that the contribution of the non-electrostatic attractions to the interaction of PAA with procaine HC1 was greater than those of the electrostatic attractions. Conclusions. We have shown that the interaction between PAA and procaine HC1 is dependent upon the presence of counterions (monovalent ions) and is mainly entropically driven. The calculated stoichiometry indicated that one procaine HC1 molecule neutralised one carboxylic acid group on PAA. Although electrostatic interactions were necessary for initiating complex formation, the non-electrostatic forces were dominant in stabilising the PAA-procaine HC1 complex.  相似文献   
3.
The influence of polymer structure on the characteristics of complexes of a phosphorothioate antisense oligonucleotide (ISIS 5132) was studied, using well-defined cationic copolymers based on 2-(dimethylamino) ethyl methacrylate (DMAEMA) and poly(ethylene glycol) (PEG). The three related copolymer structures were: DMAEMA-PEG (a diblock copolymer) DMAEMA-OEGMA 7 (a brush-type copolymer), DMAEMA-stat-PEGMA (a comb-type copolymer); each of these were examined together with DMAEMA homopolymer, which served as a control. The results revealed that all the polymers exhibited good binding ability with the oligonucleotide (ON). Interestingly, the comb-type polymer DMAEMA-stat-PEGMA demonstrated the highest binding ability and DMAEMA homopolymer the lowest, as judged by a dye displacement assay. DMAEMA homopolymer produced large agglomerates of smaller individual complexes as observed by optical density, photon correlation spectroscopy and transmission electron microscopy studies. In contrast, two PEG-block copolymers, DMAEMA-PEG and DMAEMA-OEGMA 7, formed compact complexes of 80-150 nm which had good long-term colloidal stability. This is attributed to the steric stabilisation effect of the PEG chains on the ON-copolymer complexes. These two copolymers are believed to form complexes with ON that have a micellar structure. Comb-type DMAEMA-stat-PEGMA copolymer formed highly soluble complexes with the ON that did not phase separate from the buffer solution. This study clearly demonstrates that varying the copolymer architecture allows access to a range of ON complexes. In vitro cytotoxicity experiments on HepG2 cells showed that all of the tertiary amine methacrylate copolymers displayed lower cytotoxicity than the control poly(L-lysine).  相似文献   
4.
This work explored the interaction of chitosan with Calu-3 and Caco-2 cell lines, as models of the airway and intestinal epithelium, respectively. The toxicity, tight junction opening and mucoadhesive effects of chitosan were compared in the two cell lines. Additionally, the role of mucus in the absorption-promoting activity of chitosan was studied systematically. Notably, chitosan exhibited a different degree of toxicity on the Calu-3 and Caco-2 cells. Chitosan's tight junction-opening effect, observed in terms of reduction of transepithelial electrical resistance and permeability enhancement, was apparent in both cell lines, though somewhat lower in Caco-2 compared to Calu-3 cell layers (though overall permeability was higher in the former). Tight junction opening and association of chitosan with the epithelial cell layers were more prominent in mucus-containing than in mucus-depleted Calu-3 cells and non mucus-excreting Caco-2 monolayers. Overall, the work suggests that chitosan exhibits a different level of toxicity in airway, as compared to intestinal cells and although absorption enhancement is apparent in both cell lines, enabling its potential use as an absorption-promoting excipient in both pulmonary and oral macromolecular delivery, the magnitude and the duration of the effect are dependent on the level of mucus present on the epithelial surfaces.  相似文献   
5.
A novel functionalised copolymer with three polymeric components, poly(ethylene glycol)-block-poly(aspartic acid-stat-phenylalanine), PEG-P(asp-phe), was synthesised and investigated for its potential to form micelles via ionic interactions with a model water-soluble drug, diminazene aceturate. Drug-free solutions of structurally related PEG-P(asp-phe) 5:6:4 and PEG-P(asp-phe) 5:4:6 copolymers indicated polymeric aggregation into micellar-type constructs. The size of PEG-P(asp-phe) 5:6:4 micelles was found to be pH and drug content-dependent. The drug-loaded systems existed as discreet units and were fairly uniform in size and shape. More drug could be included in the PEG-P(asp-phe) 5:6:4 micelles as compared to if only interaction with carboxyl groups from aspartic acid units was responsible for micelle formation, indicating the augmentative role of phenylalanine moieties in drug-incorporation. The slower in vitro drug release from PEG-P(asp-phe) 5:6:4 micelles as compared to PEG-Pasp (AB) micelles indicated the role of the phenylalanine moiety in controlling drug release. This study, therefore, confirmed the potential of a novel tri-component copolymer structure, PEG-P(asp-phe), for the formation of polyionic micelles for drug delivery.  相似文献   
6.
In a study directed towards non-invasive delivery of therapeutic biomacromolecules, we examined whether surface modification of sub-200 nm model nanoparticles with the Fc portion of IgG promotes their cell uptake and transport across the airway epithelial cells. The study initially confirms the expression of the relevant receptor, namely neonatal Fc receptor (FcRn), by Calu-3 cell layers simulating the airway epithelium and demonstrates FcRn-mediated cell association, internalization and transcellular transport of molecular IgG. Surface decoration of nanoparticles with the Fc portion of IgG enhanced both cell uptake and translocation of the particulate system across the cell layers, in a manner strongly suggesting FcRn involvement in these processes. The study further demonstrates the potential of Fc-modified nanoparticles to 'shuttle' a model therapeutic antibody fragment across the epithelial cell layers. Fc-modified nanoparticles are transported in the μg/h/cm(2) range, presenting a substantial increase in transport capacity in comparison to molecular IgG (ng/h/cm(2) range), therefore warranting consideration of the FcRn transcytotic pathway for further investigation as a means to achieve transmucosal delivery of nanoparticulate systems that could act as carriers of a range of biotherapeutics.  相似文献   
7.
While covalent attachment of small drug molecules to AB copolymers for the formation of polymeric micelles for drug delivery has been investigated, few studies have focused on non-covalent interactions. The aim of this study was therefore to explore the potential of non-covalent interactions between an AB copolymer, Poly(aspartic acid)-poly(ethylene glycol) (Pasp-PEG), with anionic pendant groups and diminazene aceturate, a small molecular weight cationic drug. Micelles were prepared by mixing solutions of Pasp-PEG and diminazene in 25 mM Tris-HCl buffer. At all Pasp-PEG concentrations studied, the micelles appeared to be water soluble with a unimodal size distribution and ranged in size from approximately 22 to 60 nm. The polyionic micelles also displayed similar and small absolute zeta potential values at various drug:monomer molar ratios which confirmed stabilisation by the PEG corona. The scattering intensity was maximal and remained unchanged, while particle size increased slightly at pH range from 3.4 to 7.2. At this pH range both the polymer and drug would be ionised and ionic interactions possible to drive micellar formation. An increase in size and scattering intensity with addition of NaCl to the micelles was attributed to dehydration of the PEG corona which may have led to aggregation of the micelles. The absence of micellar dissociation upon addition of salt was attributed to the dominance of hydrogen bonding between Pasp and diminazene aceturate, as assessed by isothermal titration microcalorimetry. Morphological evaluation of these constructs showed them to be discrete and fairly uniform in size and shape. This study was therefore successful in confirming the potential of non-covalent interactions using an AB copolymer to form polyionic micelles for drug delivery.  相似文献   
8.
A series of structurally related copolymers of tertiary amine methacrylate with poly(ethylene glycol) (PEG) were investigated for their potential to serve as vectors for gene therapy. The effects of copolymer structure on the complexation and transfection ability were assessed. The ability of the PEG-based copolymers and DMAEMA homopolymer to bind and condense DNA was confirmed by gel electrophoresis, ethidium bromide displacement and transmission electron microscopy. The presence of PEG in the copolymers had a beneficial effect on their ability to bind to DNA. Colloidally stable complexes were obtained for all the PEG-copolymer systems as shown by uniformly discrete spherical images from transmission electron microscopy and approximate diameters of 80-100 nm by dynamic light scattering studies. DMAEMA homopolymer, however, produced agglomerated particles, confirming the important role played by the PEG chains in producing compact stable DNA complexes. Assessment of the effect of ionic strength of the buffer on the complexation and dissociation of the complexes indicated the importance of both electrostatic and non-electrostatic interactions in the polymer-DNA complexation. In vitro transfection experiments showed that DMAEMA homopolymer gave the highest level of transfection comparable to a control poly-L-lysine (PLL) system. The PEG-based copolymers gave reduced levels of transfection, most likely due to the steric stabilization effect of a PEG corona.  相似文献   
9.
Purpose. To investigate the effects of the modification of the copolymers poloxamer 407 and poloxamine 908 on the physical and biological properties surface modified polystyrene nanospheres. Methods. A method to modify poloxamer 407 and poloxamine 908, introducing a terminal amine group to each PEO chain has been developed. The aminated copolymers can be subsequently radiolabelled with lodinated (I125) Bolton-Hunter reagent. The aminated copolymers were used to surface modify polystyrene nanospheres. The physical and biological properties of the coated nanospheres were studied using particle size, zeta potential, in vitro non-parenchymal cell uptake and in vivo biodistribution experiments. Results. The presence of protonated amine groups in the modified copolymers significantly affected the physical and biological properties of the resulting nanospheres, although the effects were copolymer specific. The protonated surface amine groups in both copolymers reduced the negative zeta potential of the nanospheres. Acetylation of the copolymer's free amine groups resulted in the production of nanospheres with comparable physical properties to control unmodified copolymer coated nanospheres. In vivo, the protonated amine groups in the copolymers increased the removal of the nanospheres by the liver and spleen, although these effects were more pronounced with the modified poloxamer 407 coated nanospheres. Acetylation of the amine groups improved the blood circulation time of the nanospheres providing modified poloxamine 908 coated nanospheres with comparable biological properties to control poloxamine 908 coated nanospheres. Similarly, modified poloxamer 407 coated nanospheres had only slightly reduced circulation times in comparison to control nanospheres. Conclusions. The experiments have demonstrated the importance of copolymer structure on the biological properties of surface modified nanospheres. Modified copolymers, which possess comparable properties to their unmodified forms, could be used in nanosphere systems where antibody fragments can be attached to the copolymers, thereby producing nanospheres which target to specific body sites.  相似文献   
10.
This review aims to evaluate the evidence for the existence of a direct nose-to-brain delivery route for nanoparticles administered to the nasal cavity and transported via the olfactory epithelium and/or via the trigeminal nerves directly to the CNS. This is relevant in the field of drug delivery as well as for new developments in nanotechnology. Experiments in animal models have shown that nano-sized drug delivery systems can enhance nose-to-brain delivery of drugs compared to equivalent drug solutions formulations. Protection of the drug from degradation and/or efflux back into the nasal cavity may partly be the reason for this effect of nanoparticles. It is uncertain, however, whether drug from the nanoparticles is being released in the nasal cavity or the nanoparticles carrying the drug are transported via the olfactory system or the trigeminal nerves into the CNS where the drug is released. Furthermore, toxicity of nanoparticulate drug delivery systems in the nasal cavity and/or in the CNS has not been extensively studied and needs to be considered carefully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号