首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
药学   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Cypermethrin is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control, disease vector control, and food safety. It accumulates in soil. Therefore, traces of cypermethrin may frequently appear in vegetables grown in contaminated soil. There is a push now to develop biomarkers as early warning indicators of environmental pollution. In this study, DNA damage (tail DNA%, tail length, and olive tail moment), the micronucleus, neutral red retention (NRR) time, and pinocytic adherence ability of coelomocytes were investigated in Pheretima peguana earthworms exposed to cypermethrin in filter paper tests. The NRR time of earthworm coelomocytes decreased significantly at a concentration of 3.5 × 10?3 µg · cm?2 (1/100 LC50) after 48 h exposure, with a highly negative correlation with cypermethrin concentration. Pinocytic adherence ability of coelomocytes also declined significantly at a cypermethrin concentration of 3.5 × 10?2 µg · cm?2 (1/10 LC50). The DNA damage to earthworm coelomocytes (tail DNA%, tail length, and olive tail moment) increased considerably at the highest concentration (3.5 × 10?1 µg · cm?2) although the correlation between tail DNA% and cypermethrin concentration was low. Thus, physiological biomarkers were more sensitive than the genotoxic effects in earthworms exposed to commercial cypermethrin. Although a suite of earthworm biomarkers could be used to evaluate cypermethrin terrestrial pollution, the NRR test is easier to conduct and a more sensitive indicator. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 597–606, 2015.  相似文献   
2.
The potential genotoxicity (nuclear anomalies, damage to single‐strand DNA) and pinocytic adherence activity of two (glyphosate‐based and paraquat‐based) commercial herbicides to earthworm coelomocytes (immune cells in the coelomic cavity) were assessed. Coelomocytes were extracted from earthworms (Pheretima peguana) exposed to concentrations <LC50 of glyphosate‐based or paraquat‐based herbicides on filter paper for 48 h. Three assays were performed: Micronucleus (light microscopy count of micronuclei, binuclei, and trinuclei), Comet (epifluorescent microscope and LUCIA image analyzer measure of tail DNA %, tail length, and tail moment), and Neutral Red (to detect phagocytic or pinocytic activity). The LC50 value for paraquat was 65‐fold lower than for glyphosate indicating that paraquat was far more acutely toxic to P. peguana. There were significant (P < 0.05) differences from the control group in total coelomocyte micronuclei, binuclei, and trinuclei frequencies of earthworms exposed to glyphosate at 25 × 10–1 (10–3 LC50) and paraquat at 39 × 10–5 (10–4 LC50) μg cm–2 filter paper. In earthworms exposed to glyphosate, no differences in tail DNA%, tail length, and tail moment of coelomocytes were detected. In contrast, for paraquat at 10–1 LC50 concentration, there were significant (P < 0.05) differences between tail DNA % and tail length, and at LC50 concentration, tail moment was also significantly different when compared with controls. A decline in pinocytic adherence activity in coelomocytes occurred on exposure to glyphosate or paraquat at 10–3 LC50 concentration. This study showed that, at concentrations well below field application rates, paraquat induces both clastogenic and aneugenic effects on earthworm coelomocytes whereas glyphosate causes only aneugenic effects and therefore does not pose a risk of gene mutation in this earthworm. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 612–620, 2014.  相似文献   
3.
A chronic toxicity study was conducted in earthworms (Pheretima peguana) exposed to soil spiked with chlorpyrifos at concentrations of 0, 0.1, 1, 10, and 100 mg/kg soil dry matter for 7, 14, and 28 days. The integrity of the coelomocyte lysosomal membrane, nervous system, and male reproductive tissue was monitored using, respectively, the neutral‐red retention assay, acetylcholinesterase (AChE) enzyme assay, and histomorphology of spermatogenic cells in the seminal vesicles and cocoon production (at 28 days after 28 days’ exposure). Chlorpyrifos decreased the coelomocyte neutral‐red retention time (NRRT) significantly (p < 0.05) at concentrations > 0.1 mg/kg soil as early as day 7 of exposure and was dose‐ and time‐dependent. Chlorpyrifos inhibition of AChE activity was greater at day 7 than at day14 (p < 0.05) indicating possibly nerve recovery. Chlorpyrifos induced concentration‐dependent damage to spermatogenic cells and cytophores in premature stages. The number and size of premature, maturing, and fully mature spermatogenic stages were increased at low concentrations (<1 mg/kg) but a number of these maturation stages declined at higher concentrations (10 and100 mg/kg) on day 28. The most severe effects were observed in the maturing and fully mature stages at the highest chlorpyrifos concentration, and this had an adverse impact on cocoon production and cocoon viability. Collectively, the results suggest induction of widespread effects on multiple organ systems in P. peguana exposed to chlorpyrifos. Although NRRT and AChE activity were the most sensitive of the biomarkers, cocoon production and cocoon viability could still be considered as diagnostic tools for monitoring effects from low‐dose long‐term chlorpyrifos toxicity and for evaluating population effects. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1450–1459, 2016.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号