首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
内科学   3篇
皮肤病学   2篇
特种医学   2篇
外科学   4篇
预防医学   2篇
药学   6篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2005年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
2.
Current treatments for bone loss injuries involve autologous and allogenic bone grafts, metal alloys and ceramics. Although these therapies have proved useful, they suffer from inherent challenges, and hence, an adequate bone replacement therapy has not yet been found. We hypothesize that graphene may be a useful nanoscaffold for mesenchymal stem cells and will promote proliferation and differentiation into bone progenitor cells. In this study, we evaluate graphene, a biocompatible inert nanomaterial, for its effect on in vitro growth and differentiation of goat adult mesenchymal stem cells. Cell proliferation and differentiation are compared between polystyrene‐coated tissue culture plates and graphene‐coated plates. Graphitic materials are cytocompatible and support cell adhesion and proliferation. Importantly, cells seeded on to oxidized graphene films undergo osteogenic differentiation in fetal bovine serum‐containing medium without the addition of any glucocorticoid or specific growth factors. These findings support graphene's potential to act as an osteoinducer and a vehicle to deliver mesenchymal stem cells, and suggest that the combination of graphene and goat mesenchymal stem cells provides a promising construct for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
Functional nanomaterials that included gold, silver nanoparticles and single wall carbon nanotubes were delivered to two cell lines (MLO‐Y4 osteocytic cells and HeLa cervical cancer cells) in various concentrations. The cells were found to uptake the nanomaterials in a relatively short time, a process that significantly affected the shape and the size of the cells. The percentage of cellular death, due to the delivery of these nanomaterials, was found to be the highest for carbon nanotubes and increased gradually with the concentration of these nanostructures. Moreover, when the nanomaterials were delivered to the cells combined with commonly used chemotherapeutic agents such as etoposide or dexamethasone, the number of the cells that died increased significantly (100–300%) as compared with the case when only the nanomaterials or the chemotherapeutic agents were delivered. The experimental results were confirmed by Caspase 3 studies, indicating a strong interaction between the nanomaterials used in this study and the protein structure of the cells, which allowed a more effective action of the apoptotic agents. These findings could be the foundation of a new class of cancer therapies that are composed of both chemotherapeutic agents and nanomaterials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy.  相似文献   
7.
Observation that 1,25‐Dihydroxyvitamin‐D3 has an immunomodulatory effect on innate and adaptive immunity raises the possible effect on clinical graft outcome. Aim of this study was to evaluate the correlation of biopsy‐proven acute rejection, CMV infection, BKV infection, with 1,25‐Dihydroxyvitamin‐D3 deficiency and the benefit of calcitriol supplementation before and during the transplantation. Risk factors and kidney graft function were also evaluated. All RTRs received induction therapy with basiliximab, cyclosporine, mycophenolic acid, and steroids. During the first year, the incidence of BPAR (4% vs 11%, P=.04), CMV infection (3% vs 9%, P=.04), and BKV infection (6% vs 19%, P=.04) was significantly lower in users compared to controls. By multivariate Cox regression analysis, 1,25‐Dihydroxyvitamin‐D3 deficiency and no calcitriol exposure were independent risk factors for BPAR (HR=4.30, P<.005 and HR=3.25, P<.05), for CMV infection (HR=2.33, P<.05 and HR=2.31, P=.001), and for BKV infection (HR=2.41, P<.05 and HR=2.45, P=.001). After one year, users had a better renal function: eGFR was 62.5±6.7 mL/min vs 51.4±7.6 mL/min (P<.05). Only one user developed polyomavirus‐associated nephropathy vs 15 controls. Two users lost their graft vs 11 controls. 1,25(OH)2‐D3 deficiency circulating levels increased the risk of BPAR, CMV infection, BKV infection after kidney transplantation. Administration of calcitriol is a way to obtain adequate 1,25(OH)2‐D3 circulating levels.  相似文献   
8.
Graphene and single‐walled carbon nanotubes were used to deliver the natural low‐toxicity drug gambogic acid (GA) to breast and pancreatic cancer cells in vitro, and the effectiveness of this complex in suppressing cellular integrity was assessed. Cytotoxicity was assessed by measuring lactate dehydrogenase release, mitochondria dehydrogenase activity, mitochondrial membrane depolarization, DNA fragmentation, intracellular lipid content, and membrane permeability/caspase activity. The nanomaterials showed no toxicity at the concentrations used, and the antiproliferative effects of GA were significantly enhanced by nanodelivery. The results suggest that these complexes inhibit human breast and pancreatic cancer cells grown in vitro. This analysis represents a first step toward assessing their effectiveness in more complex, targeted, nanodelivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
Single-walled carbon nanotubes (SWCNTs) were covalently linked to epidermal growth factor (EGF) proteins through an esterification process that was found to be responsible for the docking of SWCNTs on the human pancreatic cancer cells (PANC-1) surface, thus providing a mechanism for the enhanced delivery and internalization of the nanotubes. Micro Raman spectroscopy and enzyme-linked immunosorbent assay were used to evaluate the delivery process and kinetics of the SWCNTs. In vitro studies indicated that the delivery kinetics of SWCNT-EGF conjugates, at a concentration of 85 μg ml(-1), to the PANC-1 cell surfaces was significant in the first 30 min of incubation, but reached a plateau with time in accordance with the establishment of equilibrium between the association and the dissociation of EGF with the cell receptors. SWCNT-EGF conjugates could act as strong thermal ablation agents and could induce higher percentages of cellular death compared with the nontargeted SWCNTs alone.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号