首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
儿科学   6篇
妇产科学   3篇
基础医学   8篇
临床医学   2篇
内科学   4篇
皮肤病学   1篇
神经病学   1篇
外科学   1篇
综合类   2篇
药学   2篇
肿瘤学   9篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有39条查询结果,搜索用时 421 毫秒
1.
Earlier we had reported that irrespective of the source cigarette smoke (CS) contains substantial amounts of p-benzosemiquinone, which is readily converted to p-benzoquinone (p-BQ) by disproportionation and oxidation by transition metal containing proteins. Here we show that after CS-exposure, p-BQ-protein adducts are formed in the lungs as well as serum albumin of guinea pigs. We also show that serum of human smokers contains p-BQ-albumin adduct. It is known that human serum albumin (HSA) plays a very important role in binding and transport of a variety of ligands, including fatty acids and drugs. We show in vitro that p-BQ forms covalent adducts with free amino groups of all twenty amino acids as well as ?-amino groups of lysine residues of HSA in a concentration dependent manner. When HSA is incubated with p-BQ in the molar ratio of 1:1, the number of p-BQ incorporated is 1. At the molar ratio of 1:60, the number of p-BQ incorporated is 40. The formation of HSA-p-BQ adduct has been demonstrated by absorption spectroscopy, MALDI-MS and MALDI-TOF-TOF-MS analyses. Upon complexation with p-BQ, the secondary structure and conformation of HSA are altered, as evidenced by steady state and time-resolved fluorescence, circular dichroism, 8-anilino-1-napthalenesulfonic acid binding and differential scanning calorimetry. Alteration of the structure and conformation of HSA results in impairment of its ligand binding properties with respect to myristic acid, quercitin and paracetamol. This might be one of the reasons why transport and distribution of lipids and drugs are impaired in smokers.  相似文献   
2.
Glioblastomas are malignant brain tumors that are very difficult to cure, even with aggressive therapy consisting of surgery, chemotherapy, and radiation. Glioblastomas frequently have loss of the phosphatase and tensin homologue (PTEN), leading to the activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway. We examined whether PTEN deficiency leads to radioresistance and whether this can be reversed by nelfinavir, a protease inhibitor that decreases Akt signaling. Nelfinavir decreased Akt phosphorylation and enhanced radiosensitization in U251MG and U87MG glioblastoma cells, both of which are PTEN deficient. In the derivative line U251MG-PTEN, induction of wild-type PTEN with doxycycline decreased P-Akt expression and increased radiosensitivity to a similar extent as nelfinavir. Combining these two approaches had no greater effect on radiosensitivity than either alone. This epistasis-type analysis suggests that the nelfinavir acts along the Akt pathway to radiosensitize cells. However, nelfinavir neither decreased Akt phosphorylation in immortalized human astrocytes nor radiosensitized them. Radiosensitization was also assessed in vivo using a tumor regrowth delay assay in nude mice implanted with U87MG xenografts. The mean time to reach 1,000 mm(3) in the radiation + nelfinavir group was 71 days, as compared with 41, 34, or 45 days for control, nelfinavir alone, or radiation alone groups, respectively. A significant synergistic effect on tumor regrowth was detected between radiation and nelfinavir. (P = 0.01). Nelfinavir also increased the sensitivity of U251MG cells to temozolomide. These results support the clinical investigation of nelfinavir in combination with radiation and temozolomide in future clinical trials for patients with glioblastomas.  相似文献   
3.
Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs) targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX), monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT) were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.  相似文献   
4.
5.
6.

Purpose

The tumor suppressor protein p53 is known to control cell cycle arrest and apoptosis. Lupeol is a phytochemical that has been found to induce apoptosis in different cancer types through the extrinsic pathway. As yet, however, its role in the induction of cell cycle arrest and apoptosis through the intrinsic pathway in head and neck cancer has not been investigated. Here, we aimed at understanding the mechanism underlying the antitumor effect of Lupeol in head and neck cancer.

Methods

The antitumor effect of Lupeol on oral and laryngeal carcinomas was assessed using two in vitro 2D cell line models (HEp-2, UPCI:SCC-131) and, subsequently, an ex vivo 3D tumor explant culture platform that maintains key features of the native tumor microenvironment. The mechanism underlying Lupeol-mediated antitumor responses was delineated using MTT, colony formation, flow cytometry, immunofluorescence, Western blotting and immunohistochemistry assays.

Results

We found that Lupeol induced an enhanced expression of p53 in both cell line models tested and, subsequently, cell cycle arrest at the G1 phase. In addition we found that, following Lupeol treatment, p53 induced Bax expression and activated the intrinsic apoptotic pathway (as measured by Caspase-3 cleavage). Interestingly, Lupeol was also found to trigger G1 cell cycle arrest through up-regulation of the expression of CDKN2A, but not p21, resulting in inhibition of CyclinD1. In an ex vivo platform Lupeol was found to impart a potent antitumor response as defined by inhibition of Ki67 expression, decreased cell viability and concomitant activation (cleavage) of Caspase-3. Finally, we found that Lupeol can re-sensitize primary head and neck squamous cell carcinoma (HNSCC) tumor samples that had clinically progressed under a Cisplatin treatment regimen.

Conclusion

Together, our data indicate that Lupeol may orchestrate a bifurcated regulation of neoplastic growth and apoptosis in head and neck cancers and may serve as a promising agent for the management of tumors that have progressed on a platinum-based treatment regimen.
  相似文献   
7.
8.
Oropharyngeal teratoma in newborn is very rare. Here we report a case of oropharyngeal true teratoma where a 17-day-old female baby presented with a protruding mass from oropharynx with episodic respiratory distress and feeding difficulty complicated by aspiration pneumonia, and treated successfully with coordinated team approach.  相似文献   
9.
A high incidence of oral squamous cell carcinoma (OSCC) is observed in South‐East Asian countries due to addictions such as chewing tobacco. Local invasion and distant metastases are primary causes of poor prognosis in OSCC. This study aimed to understand the alterations in metastasis biomarkers, such as stromal cell–derived factor‐1α (SDF‐1 or SDF1α) and its receptor C‐X‐C chemokine receptor type 4 (CXCR4), in OSCC patient samples that were stratified based on the history of addiction to chewing tobacco. Targeted immunohistochemical staining and Western blotting were performed on primary tumour and metastatic lymph node (LN) tissues in parallel. Overexpression of hepatocyte growth factor (HGF), activated form of its cognate receptor tyrosine kinase, c‐Met (p‐Met), GRB2‐associated‐binding protein 1 (Gab1), phospho‐protein kinase B (pAkt), nuclear factor kappa B (NF‐κB) and cyclooxygenase‐2 (COX‐2) were observed in primary tumour and metastatic lymph nodes in both chewer and non‐chewer cohorts. Variance analysis showed significant positive correlation between them (P < .0001) indicating upregulation of these biomarkers upon ligand‐induced activation of c‐Met in both tobacco chewers and non‐chewers. Significantly higher expressions of SDF1α and CXCR4 were observed in both primary tumours and metastatic lymph nodes of tobacco chewers (P < .0001) and coincided with overexpressed HGF. In contrast, no significant correlation was observed between expression of HGF and that of SDF1α and CXCR4 in non‐chewers. Together, our findings provide important insights into the association of HGF/c‐Met and the SDF1α/CXCR4 axis in lymph node metastasis and to an aetiological link with the habit of chewing tobacco.  相似文献   
10.
Damage to intestinal epithelium limits the use of ionizing radiation (IR) in cancer therapy. Prostaglandins (PGs), generated through the action of cyclooxygenase-1 (COX-1) and COX-2 protect the intestinal stem cells from IR. In previous studies, we demonstrated that the RNA-binding protein CUGBP2 regulates the stability and translation of COX-2 mRNA by interacting with AU-rich sequences in 3' UTR. Here, we demonstrate a dynamic antagonistic relationship between CUGBP2 and COX-2. Both CUGBP2 and COX-2 are rapidly induced after IR in intestinal crypt epithelial cells in mice, but CUGBP2 protein expression is observed immediately and COX-2 protein expression is delayed. In contrast, administration of bacterial lipopolysaccharide induced COX-2 expression and PGE(2), resulting in the inhibition of CUGBP2 expression and radioprotection of the intestine. These effects were reversed by NS398, a COX-2-specific inhibitor, suggesting that lipopolysaccharide-mediated inhibition of CUGBP2 is a PG-dependent mechanism. Furthermore, CUGBP2 expression is higher in COX-1(-/-) and COX-2(-/-) mice than wild-type controls at basal conditions, which is further increased after IR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号