首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61326篇
  免费   3764篇
  国内免费   216篇
耳鼻咽喉   575篇
儿科学   1689篇
妇产科学   1237篇
基础医学   9144篇
口腔科学   526篇
临床医学   5514篇
内科学   14435篇
皮肤病学   1151篇
神经病学   5890篇
特种医学   1935篇
外国民族医学   32篇
外科学   9150篇
综合类   237篇
一般理论   15篇
预防医学   4172篇
眼科学   887篇
药学   3987篇
中国医学   141篇
肿瘤学   4589篇
  2023年   305篇
  2022年   312篇
  2021年   983篇
  2020年   661篇
  2019年   1158篇
  2018年   1665篇
  2017年   1191篇
  2016年   1230篇
  2015年   1473篇
  2014年   1737篇
  2013年   2608篇
  2012年   4208篇
  2011年   4269篇
  2010年   2330篇
  2009年   2041篇
  2008年   3830篇
  2007年   3966篇
  2006年   3706篇
  2005年   3850篇
  2004年   3602篇
  2003年   3433篇
  2002年   3423篇
  2001年   1284篇
  2000年   1313篇
  1999年   1150篇
  1998年   523篇
  1997年   453篇
  1996年   350篇
  1995年   341篇
  1994年   278篇
  1993年   261篇
  1992年   664篇
  1991年   582篇
  1990年   578篇
  1989年   518篇
  1988年   477篇
  1987年   450篇
  1986年   446篇
  1985年   401篇
  1984年   320篇
  1983年   274篇
  1982年   208篇
  1981年   157篇
  1980年   161篇
  1979年   215篇
  1978年   141篇
  1974年   157篇
  1973年   138篇
  1971年   137篇
  1969年   146篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We report a case of benign lymphoplasmacytic plaque (LPP) in a child. These asymptomatic erythematous papulonodular lesions are an emerging clinicopathological entity. Herein, we describe a previously unreported site for LPP lesions, namely, the volar wrist and the distal ipsilateral palm.  相似文献   
2.
The majority of hip fractures in the elderly are the result of a fall from standing or from a lower height. Current injury models focus mostly on femur strength while neglecting subject-specific loading. This article presents an injury modeling strategy for hip fractures related to sideways falls that takes subject-specific impact loading into account. Finite element models (FEMs) of the human body were used to predict the experienced load and the femoral strength in a single model. We validated these models for their predicted peak force, effective pelvic stiffness, and fracture status against matching ex vivo sideways fall impacts (n = 11) with a trochanter velocity of 3.1 m/s. Furthermore, they were compared to sideways impacts of volunteers with lower impact velocities that were previously conducted by other groups. Good agreement was found between the ex vivo experiments and the FEMs with respect to peak force (root mean square error [RMSE] = 10.7%, R2 = 0.85) and effective pelvic stiffness (R2 = 0.92, RMSE = 12.9%). The FEMs were predictive of the fracture status for 10 out of 11 specimens. Compared to the volunteer experiments from low height, the FEMs overestimated the peak force by 25% for low BMI subjects and 8% for high BMI subjects. The effective pelvic stiffness values that were derived from the FEMs were comparable to those derived from impacts with volunteers. The force attenuation from the impact surface to the femur ranged between 27% and 54% and was highly dependent on soft tissue thickness (R2 = 0.86). The energy balance in the FEMS showed that at the time of peak force 79% to 93% of the total energy is either kinetic or was transformed to soft tissue deformation. The presented FEMs allow for direct discrimination between fracture and nonfracture outcome for sideways falls and bridge the gap between impact testing with volunteers and impact conditions representative of real life falls. © 2019 American Society for Bone and Mineral Research.  相似文献   
3.
Chondrocytes are the main cells in the extracellular matrix (ECM) of articular cartilage and possess a highly differentiated phenotype that is the hallmark of the unique physiological functions of this specialised load-bearing connective tissue. The plasma membrane of articular chondrocytes contains a rich and diverse complement of membrane proteins, known as the membranome, which defines the cell surface phenotype of the cells. The membranome is a key target of pharmacological agents and is important for chondrocyte function. It includes channels, transporters, enzymes, receptors, and anchors for intracellular, cytoskeletal and ECM proteins and other macromolecular complexes. The chondrocyte channelome is a sub-compartment of the membranome and includes a complete set of ion channels and porins expressed in these cells. Many of these are multi-functional proteins with “moonlighting” roles, serving as channels, receptors and signalling components of larger molecular assemblies. The aim of this review is to summarise our current knowledge of the fundamental aspects of the chondrocyte channelome, discuss its relevance to cartilage biology and highlight its possible role in the pathogenesis of osteoarthritis (OA). Excessive and inappropriate mechanical loads, an inflammatory micro-environment, alternative splicing of channel components or accumulation of basic calcium phosphate crystals can result in an altered chondrocyte channelome impairing its function. Alterations in Ca2+ signalling may lead to defective synthesis of ECM macromolecules and aggravated catabolic responses in chondrocytes, which is an important and relatively unexplored aspect of the complex and poorly understood mechanism of OA development.  相似文献   
4.
5.
6.
7.
Plasma provided by COVID-19 convalescent patients may provide therapeutic relief as the number of COVID-19 cases escalates steeply worldwide. Prior findings in various viral respiratory diseases including SARS-CoV-related pneumonia suggest that convalescent plasma can reduce mortality, although formal proof of efficacy is still lacking. By reducing viral spread early on, such an approach may possibly downplay subsequent immunopathology. Identifying, collecting, qualifying and preparing plasma from convalescent patients with adequate SARS-CoV-2-neutralizing Ab titres in an acute crisis setting may be challenging, although well within the remit of most blood establishments. Careful clinical evaluation should allow to quickly establish whether such passive immunotherapy, administered at early phases of the disease in patients at high risk of deleterious evolution, may reduce the frequency of patient deterioration, and thereby COVID-19 mortality.  相似文献   
8.
Delayed contrast enhancement after injection of a gadolinium-chelate (Gd-chelate) is a reference imaging method to detect myocardial tissue changes. Its localization within the thickness of the myocardial wall allows differentiating various pathological processes such as myocardial infarction (MI), inflammatory myocarditis, and cardiomyopathies. The aim of the study was first to characterize benign myocarditis using quantitative delayed-enhancement imaging and then to investigate whether the measure of the extracellular volume fraction (ECV) can be used to discriminate between MI and myocarditis.In 6 patients with acute benign myocarditis (32.2 ± 13.8 year-old, subepicardial late gadolinium enhancement [LGE]) and 18 patients with MI (52.3 ± 10.9 year-old, subendocardial/transmural LGE), myocardial T1 was determined using the Modified Look-Locker Imaging (MOLLI) sequence at 3 Tesla before and after Gd-chelate injection. T1 values were compared in LGE and normal regions of the myocardium. The myocardial T1 values were normalized to the T1 of blood, and the ECV was calculated from T1 values of myocardium and blood pre- and post-Gd injection.In both myocarditis and MI, the T1 was lower in LGE regions than in normal regions of the left ventricle. T1 of LGE areas was significantly higher in myocarditis than in MI (446.8 ± 45.8 vs 360.5 ± 66.9 ms, P = 0.003) and ECV was lower in myocarditis than in MI (34.5 ± 3.3 vs 53.8 ± 13.0 %, P = 0.004).Both inflammatory process and chronic fibrosis induce LGE (subepicardial in myocarditis and subendocardial in MI). The present study demonstrates that the determination of T1 and ECV is able to differentiate the 2 histological patterns.Further investigation will indicate whether the severity of ECV changes might help refine the predictive risk of LGE in myocarditis.  相似文献   
9.
10.
Ovarian carcinoma is one of the most lethal malignancies, but only very few prognostic biomarkers are known. The degradome, comprising proteases, protease non-proteolytic homologues and inhibitors, have been involved in the prognosis of many cancer types, including ovarian carcinoma. The prognostic significance of the whole degradome family has not been specifically studied in high-grade serous ovarian cancer. A targeted DNA microarray known as the CLIP-CHIP microarray was used to identify potential prognostic factors in ten high-grade serous ovarian cancer women who had early recurrence (<1.6 years) or late/no recurrence after first line surgery and chemotherapy. In women with early recurrence, we identified seven upregulated genes (TMPRSS4, MASP1/3, SPC18, PSMB1, IGFBP2, CFI – encoding Complement Factor I – and MMP9) and one down-regulated gene (ADAM-10). Using immunohistochemistry, we evaluated the prognostic effect of these 8 candidate genes in an independent cohort of 112 high-grade serous ovarian cancer women. Outcomes were progression, defined according to CA-125 criteria, and death. Multivariate Cox proportional hazard regression models were done to estimate the associations between each protein and each outcome. High ADAM-10 expression (intensity of 2–3) was associated with a lower risk of progression (adjusted hazard ratio (HR): 0.51; 95% confidence interval (CI): 0.29-0.87). High complement factor I expression (intensity 2–3) was associated with a higher risk of progression (adjusted HR: 2.30, 95% CI: 1.17–4.53) and death (adjusted HR: 3.42; 95% CI: 1.72–6.79). Overall, we identified the prognostic value of two proteases, ADAM-10 and complement factor I, for high-grade serous ovarian cancer which could have clinical significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号