首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
基础医学   3篇
临床医学   15篇
内科学   12篇
神经病学   12篇
特种医学   20篇
预防医学   3篇
眼科学   3篇
药学   1篇
肿瘤学   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1971年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Reporter probe 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (18F-FHBG) and reporter gene mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) have been used for imaging reporter gene expression with PET. Current methods for quantitating the images using the percentage injected dose per gram of tissue do not distinguish between the effects of probe transport and subsequent phosphorylation. We therefore investigated tracer kinetic models for 18F-FHBG dynamic microPET data and noninvasive methods for determining blood time-activity curves in an adenoviral gene delivery model in mice. METHODS: 18F-FHBG (approximately 7.4 MBq [approximately 200 microCi]) was injected into 4 mice; 18F-FHBG concentrations in plasma and whole blood were measured from mouse heart left ventricle (LV) direct sampling. Replication-incompetent adenovirus (0-2 x 10(9) plaque-forming units) with the E1 region deleted (n = 8) or replaced by HSV1-sr39tk (n = 18) was tail-vein injected into mice. Mice were dynamically scanned using microPET (approximately 7.4 MBq [approximately 200 microCi] 18F-FHBG) over 1 h; regions of interest were drawn on images of the heart and liver. Serial whole blood 18F-FHBG concentrations were measured in 6 of the mice by LV sampling, and 1 least-squares ratio of the heart image to the LV time-activity curve was calculated for all 6 mice. For 2 control mice and 9 mice expressing HSV1-sr39tk, heart image (input function) and liver image time-activity curves (tissue curves) were fit to 2- and 3-compartment models using Levenberg-Marquardt nonlinear regression. The models were compared using an F statistic. HSV1-sr39TK enzyme activity was determined from liver samples and compared with model parameter estimates. For another 3 control mice and 6 HSV1-sr39TK-positive mice, the model-predicted relative percentage of metabolites was compared with high-performance liquid chromatography analysis. RESULTS: The ratio of 18F-FHBG in plasma to whole blood was 0.84 +/- 0.05 (mean +/- SE) by 30 s after injection. The least-squares ratio of the heart image time-activity curve to the LV time-activity curve was 0.83 +/- 0.02, consistent with the recovery coefficient for the partial-volume effect (0.81) based on independent measures of heart geometry. A 3-compartment model best described 18F-FHBG kinetics in mice expressing HSV1-sr39tk in the liver; a 2-compartment model best described the kinetics in control mice. The 3-compartment model parameter, k3, correlated well with the HSV1-sr39TK enzyme activity (r2 = 0.88). CONCLUSION: 18F-FHBG equilibrates rapidly between plasma and whole blood in mice. Heart image time-activity curves corrected for partial-volume effects well approximate LV time-activity curves and can be used as input functions for 2- and 3-compartment models. The model parameter k3 from the 3-compartment model can be used as a noninvasive estimate for HSV1-sr39TK reporter protein activity and can predict the relative percentage of metabolites.  相似文献   
2.
The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel.  相似文献   
3.
4.
The distribution volume (DV) of 6-[F-18]fluoro-L-DOPA (FDOPA) in the cerebellum recently has been linked using positron emission tomography (PET) to plasma large neutral amino acid (LNAA) concentrations in monkeys. In this article the authors provide additional experimental support for this relation by directly measuring the DV as the steady-state tissue to plasma radioactivity ratio in rats using a labeled LNAA analog 3-O-methyl-6-[F-18]FDOPA (OMFD), a compound that has no known specific enzyme or receptor interactions in brain tissue. The measured DV for OMFD (tissue OMFD concentration/plasma OMFD concentration) was found to be inversely related to plasma LNAA concentrations. The relation (DV = 1.5-0.00094*[LNAA], R--2 = 0.79) resulted in an 8% DV decrease per 100 nmol/mL plasma LNAA increase within the observed range of 330 to 510 nmol/mL. This was similar to recent noninvasive observations with FDOPA PET in vervet monkeys and with 6-[F-18]Fluoro-m-tyrosine PET in squirrel monkeys. The OMFD striatum to cerebellum (Str/Cb) ratio was greater than 1.0 for all measurements, averaging 1.09 +/- 0.04, and was approximately equal to the Str/Cb LNAA ratio of 1.12 +/- 0.05. This current study verifies the variation of DV of OMFD or FDOPA as a function of plasma LNAA concentrations and suggests the possibility of using OMFD for measuring cerebral LNAA noninvasively with PET.  相似文献   
5.
Fluorodeoxyglucose labeled with 18F (18F-FDG) is the most commonly used radiopharmaceutical in positron emission tomography (PET). Fluorine-18-labeled FDG is used as a diagnostic tool in PET studies to monitor the physiology of the brain, diagnose heart function and disease, and to image cancerous tumors. At the University of California, Los Angeles (UCLA), three cyclotrons produce [18F]-fluoride ion using 18O-enriched water targets. Fluorine-18, which has a half-life of 109.8 min, is produced using an 18O(p.n.)18F reaction and is chemically processed to yield 18F-FDG. This study presents data which demonstrate that during the radiochemical processes involved in the production of 18F-FDG, gaseous effluent containing 18F is released. Forty cyclotron production runs with average end of cyclotron bombardment activities of 15.9 +/- 1.88 GBq (430 +/- 50.8 mCi) and end of radiochemical synthesis activities of 5.40 +/- 1.27 GBq (146 +/- 34.3 mCi) yield 18F gaseous effluent releases ranging from 0 to 2560 MBq (0 to 69.2 mCi) with a mean of 437 MBq (11.8 mCi). Temporal correlation of the 18F gaseous releases during 18F-FDG radiochemical production has tied the 18F release to the addition of the glucose precursor (mannotriflate) and ethyl ether in the radiochemical processing. The results are presented in terms of activities released and dilution factors required from the release stack point to maintain controlled (occupational) and uncontrolled (public) area limits in accordance with the recommendations of the International Commission on Radiological Protection and the regulatory requirements of the federal government.  相似文献   
6.
Objective The usefulness of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG)–positron emission tomography (PET) in monitoring breast cancer response to chemotherapy has previously been reported. Elevated uptake of FDG by treated tumors can persist however, particularly in the early period after treatment is initiated. 3′-[F-18]Fluoro-3′-deoxythymidine (FLT) has been developed as a marker for cellular proliferation and, in principle, could be a more accurate predictor of the long-term effect of chemotherapy on tumor viability. We examined side-by-side FDG and FLT imaging for monitoring and predicting tumor response to chemotherapy. Methods Fourteen patients with newly diagnosed primary or metastatic breast cancer, who were about to commence a new pharmacologic treatment regimen, were prospectively studied. Dynamic 3-D PET imaging of uptake into a field of view centered over tumor began immediately after administration of FDG or FLT (150 MBq). After 45 minutes of dynamic acquisition, a clinically standard whole-body PET scan was acquired. Patients were scanned with both tracers on two separate days within one week of each other (1) before beginning treatment, (2) two weeks following the end of the first cycle of the new regimen, and (3) following the final cycle of that regimen, or one year after the initial PET scans, whichever came first. (Median and mean times of early scans were 5.0 and 6.6 weeks after treatment initiation; median and mean times for late scans were 26.0 and 30.6 weeks after treatment initiation.) Scan data were analyzed on both tumor-by-tumor and patient-by-patient bases, and compared to each patient's clinical course. Results Mean change in FLT uptake in primary and metastatic tumors after the first course of chemotherapy showed a significant correlation with late (av. interval 5.8 months) changes in CA27.29 tumor marker levels (r = 0.79, P = 0.001). When comparing changes in tracer uptake after one chemotherapy course versus late changes in tumor size as measured by CT scans, FLT was again a good predictor of eventual tumor response (r = 0.74, P = 0.01). Tumor uptake of FLT was near-maximal by 10 minutes after injection. The time frame five to 10 minutes postinjection of FLT produced standardized uptake value (SUV) values highly correlated with SUV values obtained after 45-minute uptake (r = 0.83, P < 0.0001), and changes in these early SUVs after the first course of chemotherapy correlated with late changes in CA27.29 (r = 0.93, P = 0.003). Conclusion A 10-minute FLT-PET scan acquired two weeks after the end of the first course of chemotherapy is useful for predicting longer-term efficacy of chemotherapy regimens for women with breast cancer.  相似文献   
7.
8.
9.
3-(2'-[18F]fluoroethyl)spiperone (FESP), a recently developed dopamine D2-receptor binding radiopharmaceutical, was used for dynamic characterization of dopamine-receptor binding in Macaca nemestrina monkeys and humans with positron emission tomography (PET). FESP in vitro binding properties to the dopamine receptor (IC50 = 1.5 nM) are similar to those of spiperone. Serial PET scans in monkeys after intravenous bolus injection of FESP revealed specific radioactivity accumulation in striatum (rich in dopamine D2-receptors), whereas radioactivity concentration declined after 20 min in frontal cortex (serotonin receptors) and more rapidly in cerebellum (nonspecific binding). Specific dopamine D2-receptor binding was saturated with increasing concentrations of radioligand (specific activity range: 1-10,000 Ci/mmol), was stereospecifically blocked with (+)butaclamol (0.5 mg/kg), and showed only partial displacement with spiperone (200 micrograms/kg, i.v. administration 90 min after FESP injection). From PET experiments with FESP in humans, it is possible to visualize accumulation of radioactivity in striatum in a manner similar to that observed in monkeys and, ex vivo, in rodents (adult male Sprague-Dawley rats). Biochemical analyses in rat brain revealed that the activity (approximately 90%) in striatum was unmodified FESP up to 4 h after injection. On the other hand, FESP was metabolized peripherally (rat greater than monkey greater than human), with only 11% of plasma radioactivity remaining as intact FESP in rodents and 54% in humans after 2 h. Based on these interspecies scaling pharmacokinetic data, it is unequivocal that FESP peripheral metabolites do not significantly contribute to the accumulated radioactivity in striatal tissue. Therefore, it is concluded that FESP is suitable for the quantitative estimation of dopamine D2-receptor sites using PET.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号