首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   6篇
儿科学   1篇
基础医学   6篇
临床医学   3篇
内科学   3篇
预防医学   2篇
药学   1篇
肿瘤学   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2008年   3篇
  2006年   2篇
  2003年   1篇
  2002年   2篇
  1998年   2篇
  1997年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Telomere-mediated chromosome pairing during meiosis in budding yeast   总被引:16,自引:1,他引:16       下载免费PDF全文
Certain haploid strains of Saccharomyces cerevisiae can undergo meiosis, but meiotic prophase progression and subsequent nuclear division are delayed if these haploids carry an extra chromosome (i.e., are disomic). Observations indicate that interactions between homologous chromosomes cause a delay in meiotic prophase, perhaps to allow time for interhomolog interactions to be completed. Analysis of meiotic mutants demonstrates that the relevant aspect of homolog recognition is independent of meiotic recombination and synaptonemal complex formation. A disome in which the extra chromosome is circular sporulates without a delay, indicating that telomeres are important for homolog recognition. Consistent with this hypothesis, fluorescent in situ hybridization demonstrates that a circular chromosome has a reduced capacity to pair with its homolog, and a telomere-associated meiotic protein (Ndj1) is required to delay sporulation in disomes. A circular dimer containing two copies of the same chromosome delays meiosis to the same extent as two linear homologs, implying that physical proximity bypasses the requirement for telomeres in homolog pairing. Analysis of a disome carrying two linear permuted chromosomes suggests that even nonhomologous chromosome ends can promote homolog pairing to a limited extent. We speculate that telomere-mediated chromosome movement and/or telomere clustering promote homolog pairing.  相似文献   
2.
Analysis of the function of a particular gene product typically involves determining the expression profile of the gene, the subcellular location of the protein, and the phenotype of a null strain lacking the protein. Conditional alleles of the gene are often created as an additional tool. We have developed a multifunctional, transposon-based system that simultaneously generates constructs for all the above analyses and is suitable for mutagenesis of any given Saccharomyces cerevisiae gene. Depending on the transposon used, the yeast gene is fused to a coding region for β-galactosidase or green fluorescent protein. Gene expression can therefore be monitored by chemical or fluorescence assays. The transposons create insertion mutations in the target gene, allowing phenotypic analysis. The transposon can be reduced by cre–lox site-specific recombination to a smaller element that leaves an epitope tag inserted in the encoded protein. In addition to its utility for a variety of immunodetection purposes, the epitope tag element also has the potential to create conditional alleles of the target gene. We demonstrate these features of the transposons by mutagenesis of the SPA2, ARP100, SER1, and BDF1 genes.  相似文献   
3.
The burgeoning problem of overweight and obesity in US children, adolescents, and adults has reached epidemic proportions. Data from the CRRIC I study conducted in 2000 in Jackson, Mississippi among elementary African-American children indicated that 39% of the boys and 49% of the girls had BMIs at or above the 85th percentile. The current study replicated CRRIC I in a sample of 113 African American Children in the third and fourth grades in the rural town of Canton, Mississippi. Results revealed that 46% of the boys and 46% of the girls had BMI at or above the 85th percentile. Fitness profile results revealed that only 11% of the children were classified as fit, 84% were classified as fair, and 5% were deemed unfit. As in CRRIC I, health histories of grandparents were positive for the comorbities of overweight and obesity: diabetes, stroke, and heart disease. These data indicate a critical need to aggressively intervene to impact the lifestyle choices of this generation.  相似文献   
4.
5.
Two RecA orthologs, Rad51 and Dmc1, mediate homologous recombination in meiotic cells. During budding yeast meiosis, Hed1 coordinates the actions of Rad51 and Dmc1 by down-regulating Rad51 activity. It is thought that Hed1-dependent attenuation of Rad51 facilitates formation of crossovers that are necessary for the correct segregation of chromosomes at the first meiotic division. We purified Hed1 in order to elucidate its mechanism of action. Hed1 binds Rad51 with high affinity and specificity. We show that Hed1 does not adversely affect assembly of the Rad51 presynaptic filament, but it specifically prohibits interaction of Rad51 with Rad54, a Swi2/Snf2-like factor that is indispensable for Rad51-mediated recombination. In congruence with the biochemical results, Hed1 prevents the recruitment of Rad54 to a site-specific DNA double-strand break in vivo but has no effect on the recruitment of Rad51. These findings shed light on the function of Hed1 and, importantly, unveil a novel mechanism for the regulation of homologous recombination.  相似文献   
6.
In budding yeast, there are two RecA homologs: Rad51 and Dmc1. While Rad51 is involved in both mitotic and meiotic recombination, Dmc1 participates specifically in meiotic recombination. Here, we describe a meiosis-specific protein (Hed1) with a novel Rad51 regulatory function. Several observations indicate that Hed1 attenuates Rad51 activity when Dmc1 is absent. First, although double-strand breaks are normally poorly repaired in the dmc1 mutant, repair becomes efficient when Hed1 is absent, and this effect depends on Rad51. Second, Rad51 and Hed1 colocalize as foci on meiotic chromosomes, and chromosomal localization of Hed1 depends on Rad51. Third, production of Hed1 in vegetative cells inhibits Rad51-dependent recombination events. Fourth, the Hed1 protein shows an interaction with Rad51 in the yeast two-hybrid protein system. We propose that Hed1 provides a mechanism to ensure the coordinated action of Rad51 and Dmc1 during meiosis, by down-regulating Rad51 activity when Dmc1 is unavailable.  相似文献   
7.
8.
The pachytene checkpoint prevents meiotic cell cycle progression in response to unrepaired recombination intermediates. We show that Ddc1 is required for the pachytene checkpoint in Saccharomyces cerevisiae. During meiotic prophase, Ddc1 localizes to chromosomes and becomes phosphorylated; these events depend on the formation and processing of double-strand breaks (DSBs). Ddc1 colocalizes with Rad51, a DSB-repair protein, indicating that Ddc1 associates with sites of DSB repair. The Rad24 checkpoint protein interacts with Ddc1 and with recombination proteins (Sae1, Sae2, Rad57, and Msh5) in the two-hybrid protein system, suggesting that Rad24 also functions at DSB sites. Ddc1 phosphorylation and localization depend on Rad24 and Mec3, consistent with the hypothesis that Rad24 loads the Ddc1/Mec3/Rad17 complex onto chromosomes. Phosphorylation of Ddc1 depends on the meiosis-specific kinase Mek1. In turn, Ddc1 promotes the stable association of Mek1 with chromosomes and is required for Mek1-dependent phosphorylation of the meiotic chromosomal protein Red1. Ddc1 therefore appears to operate in a positive feedback loop that promotes Mek1 function.  相似文献   
9.
10.
Development of yeast meiotic chromosome cores into full-length synaptonemal complexes requires the MEK1 gene product, a meiosis-specific protein kinase homolog. The Mek1 protein associates with meiotic chromosomes and colocalizes with the Red1 protein, which is a component of meiotic chromosome cores. Mek1 and Red1 interact physically in meiotic cells, as demonstrated by coimmunoprecipitation and the two-hybrid protein system. Hop1, another protein associated with meiotic chromosome cores, also interacts with Mek1 but only in the presence of Red1. Red1 displays Mek1-dependent phosphorylation, both in vitro and in vivo, and Mek1 kinase activity is necessary for Mek1 function in vivo. Fluorescent in situ hybridization analysis indicates that Mek1-mediated phosphorylation of Red1 is required for meiotic sister-chromatid cohesion, raising the possibility that cohesion is regulated by protein phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号