首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
基础医学   2篇
临床医学   1篇
内科学   1篇
神经病学   2篇
外科学   3篇
药学   2篇
  2003年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1975年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
2.
In order to set up a non-invasive, reliable and reproducible model for investigating α-motoneuronal activity, we studied the electrophysiological features of a monosynaptic H-reflex in anaesthetised intact rats, anaesthetised and non-anaesthetised rats transected at the level of the obex. Electrical stimulation of the tibial nerve at the ankle elicited an H-reflex, an F-wave and a direct motor (M) response in the plantaris muscles of all preparations. The H-reflex and F-wave exhibited very similar latencies. The H-reflex had a low threshold and a constant latency. Its amplitude increased as a function of stimulus intensity to reach a maximum value but then decreased when the stimulus intensity was further increased. It could follow high rates of stimulation without any change in shape or latency. The F-wave had a lower amplitude which together with its latency varied from one stimulus to the next. It appeared with intensities of stimulation that elicited an almost maximal M-response and did not decrease when the stimulation was increased. It did not appear systematically from one stimulus to the next. The H-reflex, but neither the F-wave nor the direct motor M-response, was depressed both by vibratory stimuli applied on the Achilles' tendon and following nociceptive stimulation of the flexor reflex afferents. This model could be used for assessing any potential direct effect on motoneurones of a physiological or pharmacological conditioning procedure.  相似文献   
3.
4.
In intact rats, an inhibitory mechanism counteracts the increase in excitability of a flexor reflex, which is seen in spinal animals following temporal summation of C-fibre inputs; the Rostral Ventromedial Medulla is involved in this inhibitory mechanism. Electromyographic responses elicited by electrical stimulation of the sural nerve were recorded from the biceps femoris in four types of preparations, namely intact, sham-operated, Rostral Ventromedial Medulla-lesioned and decerebrate-spinal rats. The excitability of the C-fibre reflex was tested during and following high intensity homotopic electrical conditioning stimuli. Morphine (2 mg/kg) did not significantly change the basal test response but increased the excitability of the spinal cord during conditioning. This effect was triggered by the strength of inputs, involved the Rostral Ventromedial Medulla and was probably related to some forms of motor stimulation through dopaminergic transmission. While wind-up was not reduced, the inhibition related to Diffuse Noxious Inhibitory Controls, which occurred following the conditioning period, did. In spinal animals where inhibitory mechanisms disappear, the depressive effects of morphine were unmasked for both wind-up and post-conditioning facilitations. All effects of morphine were completely reversed by naloxone.  相似文献   
5.
Thyrotoxicosis is characterised by decreased magnesium pool and also insulin resistance. The present study is evaluating the parameters of glucose metabolism under pharmacological magnesium loading in experimentally induced thyrotoxicosis, in rats. Insulin secretion was significantly increased in thyrotoxicosis compared to controls, expressing probably the status of insulin resistance due to thyroxine excess. After intraperitoneal magnesium infusion, plasma magnesium reached pharmacologically high concentrations and insulin secretion decreased significantly, but this decrease was not accompanied by alterations of glucose homeostasis. In controls, we also found a tendency towards the decrease of insulin secretion after magnesium loading, but it did not reach statistical significance. Thus, insulin secretion seems more sensitive to the inhibitory effects of magnesium overload in experimental thyrotoxicosis.  相似文献   
6.
The expression of thyroid hormones receptors in osteoblasts and osteoclasts has involved these cells as direct targets for triiodothyronine (T3), but thyroid hormones may also interact with other hormones or local growth factors to exert their actions on bone cells. Among these, growth hormone (GH) is recognised as participating in the acquisition and maintenance of bone mass and exerting stimulatory effects on human osteoblastic cells. The aim of this study was to investigate T3 effects on primary human adult osteoblast-like cells (HOB) as well as to test for possible interactions between T3 and GH on bone cell metabolism. Primary human bone cell cultures were obtained by outgrowth from trabecular bone fragments from the hip and knee. Dose-response studies demonstrated enhanced [3H]-thymidine incorporation for T3 at 10(-9), 10(-8), 10(-7) and 20(-7) M, with a maximal response of 162.81 +/- 12.97 % with T3 10(-8) M, compared to vehicle (p < 0.001). Time-course studies showed an increased osteoblast-like cell proliferation after 24 h, followed by a decrease of cell proliferation by 48 h and 72 h of culture, respectively, when compared to control cells, with a maximal response after 72 h (T3 10(-10) M: 45.21 +/- 6.97 %, p < 0.01). In addition, T3 markedly increased specific alkaline phosphatase (AP) activity in HOB (10(-10) M: 169.86 +/- 12.14 % vs. control, p < 0.001), but no significant influence on type I procollagen propeptide (PICP) production was observed. At 10(-9) - 10(-7) g/ml, GH significantly enhanced HOB proliferation (p < 0.001) however, GH effects were not dose-dependent. Triiodothyronine, at a high concentration (10(-7) M), stimulated GH-receptor (GHR) mRNA levels by 165.20 +/- 16.54 % after 24 h (p < 0.05). Correspondingly, a synergistic effect of T 3 with the same concentration and GH on cell proliferation in human adult osteoblast-like cells was found.  相似文献   
7.
In intact rats, an inhibitory mechanism counteracts the increase in excitability of a flexor reflex seen in spinal animals following high-intensity, repetitive stimulation of C-fibres. We tested the hypothesis that the rostral ventromedial medulla (RVM) is involved in these processes. Electromyographic responses elicited by electrical stimulation of the sural nerve, were recorded from the ipsilateral biceps femoris in halothane-anaesthetised, sham-operated or RVM-lesioned rats. There were no significant differences between the C-fibre reflexes in the two groups in terms of their thresholds, latencies, durations or mean recruitment curves. The excitability of the C-fibre reflex was tested following 20 s of high-intensity homotopic electrical conditioning stimuli at 1 Hz. During the conditioning period, the EMG responses first increased in both groups (the wind-up phenomenon), but then decreased in the sham-operated rats and plateaued in the RVM-lesioned rats. These effects were followed by inhibitions that were very much smaller in the RVM-lesioned rats, both in terms of their magnitudes and their durations. It is concluded that the RVM is involved in inhibitory feedback mechanisms elicited by temporal summation of C-fibre afferents that both counteract the wind-up phenomenon and trigger long periods of inhibition.  相似文献   
8.
9.
Animal models of nociception.   总被引:22,自引:0,他引:22  
The study of pain in awake animals raises ethical, philosophical, and technical problems. We review the ethical standards for studying pain in animals and emphasize that there are scientific as well as moral reasons for keeping to them. Philosophically, there is the problem that pain cannot be monitored directly in animals but can only be estimated by examining their responses to nociceptive stimuli; however, such responses do not necessarily mean that there is a concomitant sensation. The types of nociceptive stimuli (electrical, thermal, mechanical, or chemical) that have been used in different pain models are reviewed with the conclusion that none is ideal, although chemical stimuli probably most closely mimic acute clinical pain. The monitored reactions are almost always motor responses ranging from spinal reflexes to complex behaviors. Most have the weakness that they may be associated with, or modulated by, other physiological functions. The main tests are critically reviewed in terms of their sensitivity, specificity, and predictiveness. Weaknesses are highlighted, including 1) that in most tests responses are monitored around a nociceptive threshold, whereas clinical pain is almost always more severe; 2) differences in the fashion whereby responses are evoked from healthy and inflamed tissues; and 3) problems in assessing threshold responses to stimuli, which continue to increase in intensity. It is concluded that although the neural basis of the most used tests is poorly understood, their use will be more profitable if pain is considered within, rather than apart from, the body's homeostatic mechanisms.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号