首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   6篇
  国内免费   1篇
基础医学   13篇
临床医学   6篇
内科学   6篇
神经病学   1篇
外科学   6篇
眼科学   1篇
肿瘤学   28篇
  2023年   5篇
  2022年   2篇
  2021年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   10篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有61条查询结果,搜索用时 62 毫秒
1.
2.
The interaction of immature dendritic cells (DC) with irradiated pancreatic cancer cells was examined. Flow cytometric analysis using annexin V and propidium iodide revealed that ionizing radiation (25-35 Gy X-ray) induced both apoptosis and necrosis in pancreatic cancer cell lines. After irradiation, PK-1 and Panc-1 cells were likely to undergo necrosis, whereas MIAPaCa-2 cells underwent apoptosis. When DiO-stained immature DCs were co-incubated with DiI-stained irradiated MIAPaCa-2, it was observed under fluorescent microscopy that DCs phagocytized dead tumor cells as early as 4 h after co-incubation. The DCs' phagocytosis of irradiated tumor cells was also confirmed by flow cytometry. These results suggest that irradiated pancreatic cancer cells, which undergo both apoptosis and necrosis, could be a good source of tumor-associated antigens for cross-presentation by DCs.  相似文献   
3.
Several types of cancer cells, including colorectal cancer-derived cell lines, show austerity, the resistance to nutrient starvation, but exactly how cancer cells obtain energy sources under conditions in which their external nutrient supply is extremely limited remains to be clarified. Because autophagy is a catabolic process by which cells supply amino acids from self-digested organelles, cancer cells are likely to use autophagy to obtain amino acids as alternative energy sources. Amino acid deprivation-induced autophagy was assessed in DLD-1 and other colorectal cancer-derived cell lines. The autophagosome-incorporated LC3-II protein level increased after treatment with a combination of autolysosome inhibitors, which interferes with the consumption of autophagosomes. Autophagosome formation was also morphologically confirmed using ectopically expressed green fluorescent protein-LC3 fusion proteins in DLD-1 and SW480 cells. These data suggest that autophagosomes were actively produced and promptly consumed in colorectal cancer cells under nutrient starvation. Autolysosome inhibitors and 3-methyl adenine, which suppresses autophagosome formation, remarkably enhanced apoptosis under amino acid-deprived and glucose-deprived condition. Similar results were obtained in the cells with decreased ATG7 level by the RNA interference. These data suggest that autophagy is pivotal for the survival of colorectal cancer cells that have acquired austerity. Furthermore, autophagosome formation was seen only in the tumor cells but not in the adjacent noncancerous epithelial cells of colorectal cancer specimens. Taken together, autophagy is activated in colorectal cancers in vitro and in vivo, and autophagy may contribute to the survival of the cancer cells in their microenvironment.  相似文献   
4.
5.
Mitogen-activated protein kinase (MAPK) pathways play key roles in cell proliferation, transformation of mammalian cells, and the stress response. We and other investigators showed that hepatitis C virus (HCV) core protein has an oncogenic potential, but its mechanism has remained unknown. We previously demonstrated that the MAPK-extra-cellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway and its downstream target, the serum response element (SRE), is activated in BALB/3T3 cells producing HCV core protein. To elucidate the precise mechanism by which HCV core protein activates the MEK-ERK pathway, we transiently expressed HCV core protein in several cell lines and studied the signal transduction of the pathway, using Gal4-Elk1 luciferase assay, in vitro kinas assay of MAPK, and Western blotting analysis. We discovered that, in the presence of mitogenic signal, HCV core protein enhanced Elk1 activation working downstream of MEK without affecting ERK activity and Elk1 phosphorylation. Our data suggest that HCV core protein may activate Elk1 through a pathway alternative to the typical phosphorylation cascade. These findings might give new insights into the role of HCV in hepatocarcinogenesis.  相似文献   
6.
Effective molecular target drugs that improve therapeutic efficacy with fewer adverse effects for esophageal cancer are highly anticipated. Poly(ADP‐ribose) polymerase (PARP) inhibitors have been proposed as low‐toxicity agents to treat double strand break (DSB)‐repair defective tumors. Several findings imply the potential relevance of DSB repair defects in the tumorigenesis of esophageal squamous cell carcinoma (ESCC). We evaluated the effect of a PARP Inhibitor (AZD2281) on the TE‐series ESCC cell lines. Of these eight cell lines, the clonogenic survival of one (TE‐6) was reduced by AZD2281 to the level of DSB repair‐defective Capan‐1 and HCC1937 cells. AZD2281‐induced DNA damage was implied by increases in γ‐H2AX and cell cycle arrest at G2/M phase. The impairment of DSB repair in TE‐6 cells was suggested by a sustained increase in γ‐H2AX levels and the tail moment calculated from a neutral comet assay after X‐ray irradiation. Because the formation of nuclear DSB repair protein foci was impaired in TE‐6 cells, whole‐exome sequencing of these cells was performed to explore the gene mutations that might be responsible. A novel mutation in RNF8, an E3 ligase targeting γ‐H2AX was identified. Consistent with this, polyubiquitination of γ‐H2AX after irradiation was impaired in TE‐6 cells. Thus, AZD2281 induced growth retardation of the DSB repair‐impaired TE‐6 cells. Interestingly, a strong correlation between basal expression levels of γ‐H2AX and sensitivity to AZD2281was observed in the TE‐series cells (R2 = 0.5345). Because the assessment of basal DSB status could serve as a biomarker for selecting PARP inhibitor‐tractable tumors, further investigation is warranted.  相似文献   
7.
The chocolate mutation, which is associated with oculocutaneous albinism in mice, has been attributed to a G146T transversion in the conserved GTP/GDP-interacting domain of Rab38, a small GTPase that regulates intracellular vesicular trafficking. Rab38 displays a unique tissue-specific expression pattern with highest levels present in the lung. The purpose of this study was to characterize the effects of Rab38-G146T on lung phenotype and to investigate the molecular basis of the mutant gene product (Rab38cht protein). Chocolate lungs exhibited a uniform enlargement of the distal airspaces with mild alveolar destruction as well as a slight increase in lung compliance. Alveolar type II cells were engorged with lamellar bodies of increased size and number. Hydrophobic surfactant constituents (ie, phosphatidylcholine and surfactant protein B) were increased in lung tissues but decreased in alveolar spaces, consistent with a malfunction in lamellar body secretion and the subsequent cellular accumulation of these organelles. In contrast to wild-type Rab38, native Rab38cht proteins were found to be hydrophilic and not bound to intracellular membranes. Unexpectedly, recombinant Rab38cht proteins retained GTP-binding activity but failed to undergo prenyl modification that is required for membrane-binding activity. These results suggest that the genetic abnormality of Rab38 affects multiple lysosome-related organelles, resulting in lung disease in addition to oculocutaneous albinism.  相似文献   
8.
The Trp53 gene family member Trp73 encodes two major groups of protein isoforms, TAp73 and DeltaNp73, with opposing pro- and anti-apoptotic functions; consequently, their relative ratio regulates cell fate. However, the precise roles of p73 isoforms in cellular events such as tumor initiation, embryonic development, and cell death remain unclear. To determine which aspects of p73 function are attributable to the TAp73 isoforms, we generated and characterized mice in which exons encoding the TAp73 isoforms were specifically deleted to create a TAp73-deficient (TAp73(-/-)) mouse. Here we show that mice specifically lacking in TAp73 isoforms develop a phenotype intermediate between the phenotypes of Trp73(-/-) and Trp53(-/-) mice with respect to incidence of spontaneous and carcinogen-induced tumors, infertility, and aging, as well as hippocampal dysgenesis. In addition, cells from TAp73(-/-) mice exhibit genomic instability associated with enhanced aneuploidy, which may account for the increased incidence of spontaneous tumors observed in these mutants. Hence, TAp73 isoforms exert tumor-suppressive functions and indicate an emerging role for Trp73 in the maintenance of genomic stability.  相似文献   
9.
Background

Oncogenic mutations in BRAF genes are found in approximately 5–10% of colorectal cancers. The majority of BRAF mutations are located within exons 11–15 of the catalytic kinase domains, with BRAF V600E accounting for more than 80% of the observed BRAF mutations. Sensitivity to BRAF- and mitogen-activated protein kinase (MEK) inhibitors varies depending on BRAF mutations and tumor cell types. Previously, we newly identified, BRAF L525R-mutation, in the activation segment of the kinase in colorectal cancer patient. Here, we characterized the function of the BRAF L525R mutation.

Methods

HEK293 cells harboring a BRAF mutation (V600E or L525R) were first characterized and then treated with cetuximab, dabrafenib, and selumetinib. Cell viability was measured using WST-1 assay and the expression of proteins involved in the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signaling pathways was evaluated using western blot analysis.

Results

The MEK inhibitor selumetinib effectively inhibited cell proliferation and ERK phosphorylation in BRAF L525R cells but not in BRAF V600E cells. Further studies revealed that AKT phosphorylation was reduced by selumetinib in BRAF L525R cells but not in BRAF V600E cells or selumetinib-resistant BRAF L525R cells. Moreover, the AKT inhibitor overcame the selumetinib resistance.

Conclusions

We established a model system harboring BRAF L525R using HEK293 cells. BRAF L525R constitutively activated ERK. AKT phosphorylation caused sensitivity and resistance to selumetinib. Our results suggest that a comprehensive network analysis may provide insights to identify effective therapies.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号