首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   51篇
  国内免费   6篇
儿科学   8篇
妇产科学   13篇
基础医学   88篇
口腔科学   6篇
临床医学   44篇
内科学   77篇
皮肤病学   67篇
神经病学   132篇
特种医学   33篇
外科学   65篇
综合类   2篇
预防医学   18篇
眼科学   3篇
药学   30篇
中国医学   3篇
肿瘤学   15篇
  2023年   8篇
  2022年   6篇
  2021年   30篇
  2020年   14篇
  2019年   24篇
  2018年   23篇
  2017年   14篇
  2016年   16篇
  2015年   23篇
  2014年   22篇
  2013年   21篇
  2012年   39篇
  2011年   32篇
  2010年   24篇
  2009年   34篇
  2008年   40篇
  2007年   34篇
  2006年   27篇
  2005年   26篇
  2004年   19篇
  2003年   17篇
  2002年   32篇
  2001年   16篇
  2000年   3篇
  1999年   6篇
  1998年   10篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1992年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   2篇
排序方式: 共有604条查询结果,搜索用时 15 毫秒
1.
2.
3.
BACKGROUND: The present study investigated whether a failure of self-monitoring contributes to core syndromes of schizophrenia. METHOD: Three groups of patients with a DSM-IV diagnosis of schizophrenia (n = 27), with either prominent paranoid hallucinatory or disorganization syndrome, or without these symptoms, and a matched healthy control group (n = 23) drew circles on a writing pad connected to a PC monitor. Subjects were instructed to continuously monitor the relationship between their hand movements and their visual consequences. They were asked to detect gain changes in the mapping. Self-monitoring ability and the ability to automatically correct movements were assessed. RESULTS: Patients with either paranoid-hallucinatory syndrome or formal thought disorder were selectively impaired in their ability to detect a mismatch between a self-generated movement and its consequences, but not impaired in their ability to automatically compensate for the gain change. CONCLUSIONS: These results support the claim that a failure of self-monitoring may underlie the core symptoms of schizophrenia.  相似文献   
4.
Der Freie Zahnarzt - Mundschleimhauterkrankungen begegnen der Zahnärztin/dem Zahnarzt in Klinik und Praxis bei der täglichen Arbeit am Patienten und stellen oftmals eine große...  相似文献   
5.
6.
7.
The International Journal of Cardiovascular Imaging - To evaluate the prevalence of aortic regurgitation (AR) and associations between the individual aortic root components and AR severity in the...  相似文献   
8.
Scientific cinematography using ultrafast optical imaging is a common tool to study motion. In opaque organisms or structures, X-ray radiography captures sequences of 2D projections to visualize morphological dynamics, but for many applications full four-dimensional (4D) spatiotemporal information is highly desirable. We introduce in vivo X-ray cine-tomography as a 4D imaging technique developed to study real-time dynamics in small living organisms with micrometer spatial resolution and subsecond time resolution. The method enables insights into the physiology of small animals by tracking the 4D morphological dynamics of minute anatomical features as demonstrated in this work by the analysis of fast-moving screw-and-nut–type weevil hip joints. The presented method can be applied to a broad range of biological specimens and biotechnological processes.The best method to study morphological changes of anatomic features and physiological processes is to observe their dynamics in 4D, that is, in real time and in 3D space. To achieve this we have developed in vivo X-ray cine-tomography to gain access to morphological dynamics with unrivaled 4D spatiotemporal resolution. This opens the way to a wide range of hitherto inaccessible, systematic investigations of small animals and biological internal processes such as breathing, circulation, digestion (1), reproduction, and locomotion (2).At the micrometer resolution range, state-of-the-art optical imaging techniques can achieve high magnifications to visualize tissues and even individual cells for 4D studies. These methods however are confined to transparent or fluorescent objects, or are limited either by low penetration depth <1 mm or poor time resolution (3). For optically opaque living organisms X-ray imaging methods are highly appropriate due to the penetrating ability of the radiation. Modern synchrotron radiation facilities provide brilliant and partially coherent radiation suitable for high-resolution volume imaging methods such as X-ray computed microtomography (SR-µCT). For static specimens SR-µCT has proven to be a powerful tool to study small animal morphology in 3D (46). The benefits of various physical contrast mechanisms, high spatial resolution, and short measuring times, as well as enormous sample throughput compared with laboratory X-ray setups, have led to its widespread use in life sciences.Real-time in vivo X-ray imaging with micrometer spatial resolution was realized so far by recording time sequences of 2D projection radiographs of different organisms (1, 6, 7), providing time information about functional dynamics but losing any information about the third spatial dimension.Recently, 4D in vivo X-ray experiments have been performed to study cell migration in frog embryos (8, 9) using tomographic sequences of a few seconds exposure time per tomogram interrupted by longer nonexposure time slots. In this way the authors followed relatively slow dynamics and morphological changes during embryonic development with 2-µm resolution over total time intervals of several hours. The fastest 4D time series yet reported were realized with a temporal resolution of 0.5 s and spatial resolution of 25 µm (10), applied to a living caterpillar used as test specimen for imaging, but without any analysis of dynamics.In this paper, we demonstrate the quantitative 4D investigation of morphological dynamics by in vivo X-ray 4D cine-tomography, introduced here as the combination of ultrafast SR-µCT and motion analysis procedures. Using this approach allows us to investigate previously inaccessible 3D morphological dynamics in small animals, presently with feature sizes in the micrometer range and with temporal resolution down to a few tens of milliseconds. In the past, ultrafast in vivo imaging was hardly possible for such applications, due to the strongly competing requirements for simultaneous high contrast, high signal-to-noise ratio (SNR), and concurrent low radiation dose, as well as the need for simultaneous high spatial resolution and maximum temporal resolution.In the following we describe how in vivo X-ray 4D cine-tomography meets the above challenges by optimizing image contrast, SNR, and spatial and temporal resolution in the ultrafast SR-µCT system and by establishing a dedicated data analysis pipeline, all within a unified framework (Fig. S1). We demonstrate the potential of the technique by investigating morphological dynamics in fast-moving weevils, focusing here on the exoskeletal joints.  相似文献   
9.
Objective Based on the frequency of immune‐mediated and non‐immune‐mediated transfusion‐related acute lung injury (TRALI), the effect of risk‐minimization measures was evaluated during a period of 5 years (2006–2010). Risk‐minimization measures were implemented in 2008/2009, consisting of exclusion of female donors with a history of pregnancy or exclusion of female donors with human leucocyte antigen (HLA)/human neutrophil alloantigen (HNA) antibodies. Methods TRALI was confirmed according to the criteria of the International Haemovigilance Network. Based upon the results of donor testing of white‐blood‐cell antibodies (WBC‐Ab) against HLA or HNAs, confirmed cases were classified as immune‐ or non‐immune‐mediated TRALI. Reporting rates were calculated on the basis of the annually transfused blood components, and pre‐ and post‐implementation periods were compared. Results In total, 60 immune‐mediated (75%) and 20 non‐immune‐mediated (25%) TRALI reactions were confirmed. A total of 68 (64 women and four men) donors were involved: seven red‐blood‐cell concentrates donors (13%), six platelet concentrate donors (10%), and 48 fresh frozen plasma (FFP) donors (77%). The reporting rate of immune‐mediated TRALI caused by FFP decreased continuously; from 12·71 per million units in 2006/2007 to 6·81 per million units in 2008/2009 and no case in 2010. Conclusion The comparison of the pre‐ and the post‐implementation period demonstrated a significantly reduced risk of TRALI events comparing 2006/2007 with 2010 (P‐value: < 0·01). Furthermore, no case of TRALI‐induced fatality occurred after the implementation of risk‐minimization measures.  相似文献   
10.
The interplay between hematopoietic stem and progenitor cells (HSPC) and their local microenvironment is a key mechanism for the organization of hematopoiesis. To quantitatively study this process, a time-resolved analysis of cellular dynamics at the single-cell level is an essential prerequisite. One way to generate sufficient amounts of appropriate data is automatic single-cell tracking using time-lapse video microscopy. We describe and apply newly developed computational algorithms that allow for an automated generation of high-content data of single-cell characteristics at high temporal and spatial resolution, together with the reconstruction and statistical evaluation of complete genealogical histories. This methodology has been applied to the particular example of purified primary human HSPCs in bioengineered culture conditions. The combination of genealogical information and dynamic profiles of cellular properties identified a marked symmetry between sibling HSPCs regarding cell cycle time, but also migration speed and growth kinetics. Furthermore, we demonstrate that this symmetry of HSPC siblings can be altered by exogenous cues of the local biomimetic microenvironment. Using the example of HSPC growth in biomimetic culture systems, we show that our approach provides a valuable tool for the quantitative analysis of dynamic single-cell features under defined in?vitro conditions, allowing for integration of functional and genealogical data. The efficiency and accuracy of our approach pave the way for new and intriguing insights into the organizational principles of developmental patterns and the respective influence of exogenous cues not limited to the study of primary HSPCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号