首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
基础医学   7篇
临床医学   2篇
内科学   1篇
神经病学   1篇
肿瘤学   5篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
排序方式: 共有16条查询结果,搜索用时 390 毫秒
1.
Genetic alterations of PI3K (phosphoinositide 3-kinase) subunits have been documented in a number of tumor types, with increased PI3K activity linked to gene amplification and mutation of catalytic subunits, as well as mutations of regulatory subunits. Among high grade gliomas, activation of the PI3K-AKT signaling pathway through loss of PTEN function is common. We therefore investigated whether genetic alteration of class IA PI3Ks might provide a mechanism for deregulation of this pathway in glioblastomas. We studied a series of glioblastomas with FISH to assess copy number of catalytic subunits (PIK3CA and PIK3CD) and with PCR-SSCP to screen for somatic mutations of conserved regions of both catalytic and regulatory subunits. FISH revealed frequent balanced copy number increases of both PIK3CA and PIK3CD, and one case showed an extra copy limited to PIK3CA. One glioblastoma exhibited a 9-bp deletion that encompassed the exon-intron junction of exon 12 of PIK3R1, documenting for the first time a mutation within a PI3K regulatory subunit in human glioblastoma. This deletion would be predicted to yield a truncated protein that lacks the inhibitory domain, resulting in increased PI3K activity. Furthermore, the case with selected PIK3CA copy number gain and the case with a truncating PIK3R1 mutation both featured AKT activation without PTEN mutation. These results suggest that genetic alterations of class IA PI3K subunit genes can occasionally play a role in human glioblastoma by activating the PI3K-AKT signaling pathway independently of PTEN mutation.  相似文献   
2.
Array-based comparative genomic hybridization (aCGH) is a powerful, high-throughput tool for whole genome analysis. Until recently, aCGH could only be reproducibly performed on frozen tissue samples and with significant tissue amounts. For brain tumors however, paraffin-embedded tissue blocks from small stereotactic biopsies may be the only tissue routinely available. The development of methods to analyze formalin-fixed, paraffin-embedded (FFPE) material therefore has the potential to impact molecular diagnosis in a significant way. To this end, we constructed a BAC array representing chromosomes 1, 7, 19, and X because 1p/19q deletion and EGFR gene amplification provide clinically relevant information for glioma diagnosis. We also optimized a two-step labeling procedure using an amine-modified nucleotide for generating aCGH probes. Using this approach, we analyzed a series of 28 FFPE oligodendroglial tumors for alterations of chromosomes 1, 7, and 19. We also independently assayed these tumors for 1p/19q deletion by fluorescence in situ hybridization and by loss of heterozygosity analyses. The concordance between aCGH, standard loss of heterozygosity and fluorescence in situ hybridization was nearly 100% for the chromosomes analyzed. These results suggest that aCGH could offer an improved molecular diagnostic approach for gliomas because of its ability to detect clinically relevant molecular alterations in small FFPE specimens.  相似文献   
3.
Several techniques are commonly used for genetic analysis of interphase nuclei. Flow cytometry assays the distribution of DNA content in populations of nuclei stained with a DNA-specific fluorochrome. Fluorescence in situ hybridization (FISH) quantifies the number of copies of a specific DNA sequence in single nuclei. Comparative genomic hybridization (CGH) assesses the relative copy number of DNA sequences throughout a test genome by comparing the signal intensities of test and reference DNA samples hybridized to a template of normal metaphase chromosomes. In principle, there are specific relationships among data obtained from these measurements, and combined measurements should provide a more comprehensive view of the sample that is analyzed. We applied these three techniques to nine brain tumor cell lines and find that a model of CGH that includes unsuppressed repeat sequences describes the data well. We estimate that up to 35% of the fluorescence intensity in well-blocked CGH preparations may not represent unique sequences. Taking these factors into account, our results are, in general, mutually consistent, and highlight issues critical for interpreting CGH preparations. Genes Chromosomes Cancer 20:311-319, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
4.
Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues.  相似文献   
5.
Comparative genomic hybridization (CGH) is a recent molecular cytogenetic method that detects and localizes gains or losses in DNA copy number across the entire tumor genome. We used CGH to examine 9 glioma cell lines and 20 primary and 10 recurrent glioblastoma tumors. More than 25% of the primary tumors had gains on chromosome 7; they also had frequent losses on 9p, 10, 13 and Y. The losses on chromosome 13 included several interstitial deletions, with a common area of loss at 13q21. The recurrent tumors not only had gains on chromosome 7 and losses on 9p, 10, 13 and Y but also frequent losses on 6 and 14. One recurrent tumor had a deletion of 10q22-26. Cell lines showed gains of 5p, 7 and Xp; frequent amplifications at 8q22-24.2, 7q2l-32 and 3q26.2-29 and frequent losses on 4, 10, 13, 14 and Y. Because primary and recurrent tumors and cell lines showed abnormalities of DNA copy number on chromosomes 7, 10, 13 and Y, these regions may play a fundamental role in tumor initiation and/or progression. The propensity for losses on chromosomes 6 and 14 to occur in recurrent tumors suggests that these aberrations play a role in tumor recurrence, the development of resistance to therapy or both. Analysis of common areas of loss and gain in these tumors and cell lines provides a basis for future attempts to more finely map these genetic changes.  相似文献   
6.
We analyzed 72 primary and 25 recurrent glioblastoma multiforme (GBM) samples for DNA sequence copy number abnormalities (CNAs) by comparative genomic hybridization (CGH). The number of aberrations per tumor ranged from 2 to 23 in primary GBM and 5 to 25 in recurrent GBM. There were 26 chromosome regions with CNAs in more than 20% of tumors. 7q22-36 was the most common gain and 10q25-26 was the most common loss; each occurred in more than 70% of tumors. Of 27 amplification sites, epidermal growth factor receptor (EGFR) was the most common; it was observed in 25% of primary GBMs. Statistical analysis based on pairwise correlation of CNAs indicated that there is more than one class of primary GBM. Genes Chromosomes Cancer 21:195–206, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
7.
Intraductal carcinoma of the prostate(IDCP) is defined as a solid or cribriform neoplastic growth confined to ducts and acini, with preservation of the basal cell layer. Since IDCP can often present tumor necrosis (TN), it should be distinguished from Gleason 5 (GP5) invasive adenocarcinoma for staging and clinical purposes. In the present study we reviewed 344 radical prostatectomies performed at our institution and selected all cases with either >5% GP5 or IDCP for assessment of TN on histology slides (n?=?59). A total of 19 cases with TN were identified, and morphology, size, location, and histoarchitecture of the lesions with TN were recorded. Subsequently, the corresponding sections were stained with a basal cell immunomarker (P63), and lesions with TN were assigned to IDCP or invasive carcinoma GP5 for comparison. Our results show that a branched shape and size 501–1000?μm are more common in IDCP, while a size >1000?μm and location within 1?mm of the periprostatic soft tissue are significantly more prevalent in invasive adenocarcinoma GP5. These features, however, usually cannot be assessed in core biopsies. In this setting, the utilization of immunohistochemistry is warranted to differentiate IDCP and GP5 with necrosis.  相似文献   
8.
In a screen for gene copy number alterations in mouse mammary tumors initiated by loss of the Brca1 and Trp53 genes, we observed that the majority (11 of 15; 73%) had high-level amplification of wild-type Met, encoding a growth factor receptor implicated in tumor progression. Met amplification was localized to unstable double minute chromosomes and was uniquely found in mouse breast tumors driven by loss of Brca1 and Trp53. Whereas analogous MET amplification was not found in human breast cancers, the identification of a dominant somatic genetic lesion in the Brca1/Trp53 mouse model suggests that recurrent secondary hits may also exist in BRCA1-initiated human breast cancer.  相似文献   
9.
The success of molecular targeted therapy in cancer may depend on the selection of appropriate tumor types whose survival depends on the drug target, so-called "oncogene addiction." Preclinical approaches to defining drug-responsive subsets are needed if initial clinical trials are to be directed at the most susceptible patient population. Here, we show that gastric cancer cells with high-level stable chromosomal amplification of the growth factor receptor MET are extraordinarily susceptible to the selective inhibitor PHA-665752. Although MET activation has primarily been linked with tumor cell migration and invasiveness, the amplified wild-type MET in these cells is constitutively activated, and its continued signaling is required for cell survival. Treatment with PHA-665752 triggers massive apoptosis in 5 of 5 gastric cancer cell lines with MET amplification but in 0 of 12 without increased gene copy numbers (P = 0.00016). MET amplification may thus identify a subset of epithelial cancers that are uniquely sensitive to disruption of this pathway and define a patient group that is appropriate for clinical trials of targeted therapy using MET inhibitors.  相似文献   
10.
An insular cortex tumor in a 54-year-old woman showed unequivocal neurocytic features, including open nuclei, distinct nucleoli, and strong synaptophysin immunoreactivity. Ultrastructurally, there were neuritic-type processes with microtubules and hillock-like attachments, and there were dense-core granules. Atypical features were mitotic activity, prominent vasculature, and small foci of necrosis. Peripherally, there was oligodendroglia-like histology with single-cell infiltration of white matter and perineuronal spread in cortex. Fluorescence in situ hybridization analysis with chromosome 1 and 19 probes showed 3 copies of 1q and 2 copies of 1p and showed 2 copies of 19q and 4 copies of 19p. This yielded a 1p-19q loss of heterozygosity pattern similar to that seen in oligodendrogliomas, although the actual chromosomal abnormality is distinct. This tumor, best classified as an atypical neurocytoma with oligodendroglia-like spread, supports suggestions of a close histogenic relationship between oligodendroglial and neurocytic tumors. This case also illustrates the limitations of relying exclusively on loss of heterozygosity analysis for tumor classification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号