首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185582篇
  免费   1806篇
  国内免费   141篇
耳鼻咽喉   1350篇
儿科学   6795篇
妇产科学   3166篇
基础医学   17998篇
口腔科学   1681篇
临床医学   13134篇
内科学   32806篇
皮肤病学   1037篇
神经病学   17251篇
特种医学   9762篇
外科学   30544篇
综合类   2480篇
一般理论   5篇
预防医学   18449篇
眼科学   3093篇
药学   10127篇
中国医学   736篇
肿瘤学   17115篇
  2023年   80篇
  2022年   156篇
  2021年   363篇
  2020年   255篇
  2019年   325篇
  2018年   22231篇
  2017年   17615篇
  2016年   19867篇
  2015年   1396篇
  2014年   1380篇
  2013年   1386篇
  2012年   7878篇
  2011年   21819篇
  2010年   19297篇
  2009年   11915篇
  2008年   20007篇
  2007年   22253篇
  2006年   1087篇
  2005年   2668篇
  2004年   3774篇
  2003年   4680篇
  2002年   2807篇
  2001年   474篇
  2000年   575篇
  1999年   332篇
  1998年   264篇
  1997年   269篇
  1996年   124篇
  1995年   141篇
  1994年   138篇
  1993年   96篇
  1992年   142篇
  1991年   229篇
  1990年   208篇
  1989年   124篇
  1988年   106篇
  1987年   88篇
  1986年   64篇
  1985年   78篇
  1984年   55篇
  1983年   48篇
  1982年   50篇
  1980年   63篇
  1978年   27篇
  1974年   31篇
  1969年   29篇
  1938年   60篇
  1934年   30篇
  1932年   56篇
  1930年   46篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
2.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
3.
4.
5.
The acquisition of chemoresistance remains a major cause of cancer mortality due to the limited accessibility of targeted or immune therapies. However, given that severe alterations of molecular features during epithelial‐to‐mesenchymal transition (EMT) lead to acquired chemoresistance, emerging studies have focused on identifying targetable drivers associated with acquired chemoresistance. Particularly, AXL, a key receptor tyrosine kinase that confers resistance against targets and chemotherapeutics, is highly expressed in mesenchymal cancer cells. However, the underlying mechanism of AXL induction in mesenchymal cancer cells is poorly understood. Our study revealed that the YAP signature, which was highly enriched in mesenchymal‐type lung cancer, was closely correlated to AXL expression in 181 lung cancer cell lines. Moreover, using isogenic lung cancer cell pairs, we also found that doxorubicin treatment induced YAP nuclear translocation in mesenchymal‐type lung cancer cells to induce AXL expression. Additionally, the concurrent activation of TGFβ signaling coordinated YAP‐dependent AXL expression through SMAD4. These data suggest that crosstalk between YAP and the TGFβ/SMAD axis upon treatment with chemotherapeutics might be a promising target to improve chemosensitivity in mesenchymal‐type lung cancer.

Abbreviations

AUC
area under the curve
AXL
AXL receptor tyrosine kinase
BCL2
B‐cell lymphoma 2
CTD2
cancer target discovery and development
CTGF
connective tissue growth factor
DEG
differentially expressed genes
DOXO
doxorubicin
EMT
epithelial–mesenchymal transition
Eto
etoposide
FDA
Food and Drug Administration
ITGB3
integrin beta‐3
MAPK
mitogen‐activated protein kinase
MMP2
matrix metalloproteinase‐2
MMP9
matrix metalloproteinase‐9
mRNA
messenger RNA
NF‐κB
nuclear factor kappa‐light‐chain‐enhancer of activated B cells
SBE
SMAD binding element
SERPINE1
serpin family E member 1
siRNA
small interfering RNA
ssGSEA
single‐sample gene set enrichment analysis
TCGA
The Cancer Genome Atlas
TGFβ
transforming growth factor beta
YAP
Yes‐associated protein
YAP8SA
mutants of inhibitory phosphorylation site at eight serine to Alanine of YAP
ZEB1
zinc finger E‐box binding homeobox 1
ZEB2
zinc finger E‐box‐binding homeobox 2
  相似文献   
6.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
7.
This paper takes a somewhat slant perspective on flourishing and care in the context of suffering, death and dying, arguing that care in this context consists principally of ‘acts of work and courage that enable flourishing’. Starting with the perception that individuals, society and health care professionals have become dulled to death and the process of dying in Western advanced health systems, it suggests that for flourishing to occur, both of these aspects of life need to be faced more directly. The last days of life need to be ‘undulled’. Reflections upon the experiences of the author as carer and daughter in the face of her mother’s experience of death are used as basis for making suggestions about how care systems and professionals might better assist people in dealing with ‘the most grown up thing’ humans ever do, which is to die.  相似文献   
8.
9.
ObjectiveTo compare the lumen parameters measured by the location-adaptive threshold method (LATM), in which the inter- and intra-scan attenuation variabilities of coronary computed tomographic angiography (CCTA) were corrected, and the scan-adaptive threshold method (SATM), in which only the inter-scan variability was corrected, with the reference standard measurement by intravascular ultrasonography (IVUS).Materials and MethodsThe Hounsfield unit (HU) values of whole voxels and the centerline in each of the cross-sections of the 22 target coronary artery segments were obtained from 15 patients between March 2009 and June 2010, in addition to the corresponding voxel size. Lumen volume was calculated mathematically as the voxel volume multiplied by the number of voxels with HU within a given range, defined as the lumen for each method, and compared with the IVUS-derived reference standard. Subgroup analysis of the lumen area was performed to investigate the effect of lumen size on the studied methods. Bland-Altman plots were used to evaluate the agreement between the measurements.ResultsLumen volumes measured by SATM was significantly smaller than that measured by IVUS (mean difference, 14.6 mm3; 95% confidence interval [CI], 4.9–24.3 mm3); the lumen volumes measured by LATM and IVUS were not significantly different (mean difference, −0.7 mm3; 95% CI, −9.1–7.7 mm3). The lumen area measured by SATM was significantly smaller than that measured by LATM in the smaller lumen area group (mean of difference, 1.07 mm2; 95% CI, 0.89–1.25 mm2) but not in the larger lumen area group (mean of difference, −0.07 mm2; 95% CI, −0.22–0.08 mm2). In the smaller lumen group, the mean difference was lower in the Bland-Altman plot of IVUS and LATM (0.46 mm2; 95% CI, 0.27–0.65 mm2) than in that of IVUS and SATM (1.53 mm2; 95% CI, 1.27–1.79 mm2).ConclusionSATM underestimated the lumen parameters for computed lumen segmentation in CCTA, and this may be overcome by using LATM.  相似文献   
10.
Advancing nanomedicines from concept to clinic requires integration of new science with traditional pharmaceutical development. The medical and commercial success of nanomedicines is greatly facilitated when those charged with developing nanomedicines are cognizant of the unique opportunities and technical challenges that these products present. These individuals must also be knowledgeable about the processes of clinical and product development, including regulatory considerations, to maximize the odds for successful product registration. This article outlines these topics with a goal to accelerate the combination of academic innovation with collaborative industrial scientists who understand pharmaceutical development and regulatory approval requirements—only together can they realize the full potential of nanomedicines for patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号