首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
妇产科学   1篇
临床医学   3篇
药学   1篇
肿瘤学   8篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Induction of the antiviral cytokine interferon alpha/beta (IFN-alpha/beta) is common in many viral infections. The impact of ongoing antiviral responses on subsequent bacterial infection is not well understood. In human disease, bacterial superinfection complicating a viral infection can result in significant morbidity and mortality. We injected mice with polyinosinic-polycytidylic (PIC) acid, a TLR3 ligand and known IFN-alpha/beta inducer as well as nuclear factor kappaB (NF-kappaB) activator to simulate very early antiviral pathways. We then challenged mice with an in vivo septic shock model characterized by slowly evolving bacterial infection to simulate bacterial superinfection early during a viral infection. Our data demonstrated robust induction of IFN-alpha in serum within 24 h of PIC injection with IFN-alpha/beta-dependent major histocompatibility antigen class II up-regulation on peritoneal macrophages. PIC pretreatment before septic shock resulted in augmented tumor necrosis factor alpha and interleukins 6 and 10 and heightened lethality compared with septic shock alone. Intact IFN-alpha/beta signaling was necessary for augmentation of the inflammatory response to in vivo septic shock and to both TLR2 and TLR4 agonists in vitro. To assess the NF-kappaB contribution to PIC-modulated inflammatory responses to septic shock, we treated with parthenolide, an NF-kappaB inhibitor before PIC and septic shock. Parthenolide did not inhibit IFN-alpha induction by PIC. Inhibition of NF-kappaB by parthenolide did reduce IFN-alpha-mediated potentiation of the cytokine response and lethality from septic shock. Our data demonstrate that pathways activated early during many viral infections can have a detrimental impact on the outcome of subsequent bacterial infection. These pathways may be critical to understanding the heightened morbidity and mortality from bacterial superinfection after viral infection in human disease.  相似文献   
2.
Beta-ionone, an end-ring analogue of beta-carotenoid, which is a constituent of vegetables and fruits, has been analyzed for colon cancer chemoprevention and treatment. beta-Ionone induced cell growth inhibition and apoptosis in human colon cancer HCT116 cell line. We tested the in vivo chemopreventive efficacy in rat colon carcinogenesis model using aberrant crypt foci (ACF) as endpoint marker. HCT116 cells treated with subtoxic concentrations of beta-ionone resulted dose-dependent cell growth suppression with G1-S-phase growth arrest and significant induction of apoptosis. beta-Ionone up-regulated expression of retinoid X receptor-alpha mRNA dose-dependently in HCT116 cells. To evaluate inhibitory properties of beta-ionone on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.1%, or 0.2% beta-ionone. After 1 week, rats received s.c. injections of azoxymethane, 15 mg/kg body weight, once weekly for 2 weeks. Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.1% and 0.2% beta-ionone significantly suppressed total colonic ACF formation up to 34% to 38% (P<0.0002 to P<0.0009), respectively, when compared with control group. Importantly, rats fed beta-ionone showed >55% inhibition (P<0.0001) of foci containing four or more aberrant crypts. Results from in vitro and in vivo bioassay clearly suggest that beta-ionone could be further developed for prevention and treatment of colon cancer.  相似文献   
3.
Epidemiological and experimental studies have suggested that dietary supplementation with selenium can inhibit the development of cancers at several organ sites. We have consistently shown that 1, 4-phenylene bis(methylene) selenocyanate (p-XSC) is a highly effective cancer chemopreventive agent against the development of chemically induced cancers in several laboratory animal species. This is the first report describing the preventive effects of p-XSC in an animal model of familial adenomatous polyposis (FAP) containing a germline mutation of the APC gene. Six-week old male (heterozygous) C57BL/6J-APC(min) or wild-type mice were fed high fat diets containing 0, 10 or 20 p.p.m. p-XSC. After 80 days, the mice were killed and their intestines were excised and evaluated for polyps. Multiple samples were also harvested from normal appearing small intestine and colon for molecular analysis. Both the mucosa and polyps from the intestine and colon were assayed for beta-catenin, cyclooxygenase (COX)-2 expression and COX isoform activities. Administration of p-XSC in the diet significantly decreased the rate of formation of small intestinal tumors (P < 0. 0001) and colon tumors (P < 0.002) in APC(min) mice. p-XSC produced a dose-dependent inhibition of tumors in both small intestine (P < 0. 0001) and colon (P < 0.035). Mice fed 20 p.p.m. p-XSC had significantly lower levels of beta-catenin expression and COX-2 activity in polyps. These observations demonstrate for the first time that the synthetic organoselenium compound p-XSC possesses antitumor activity against genetically predisposed neoplastic lesions, such as FAP. While the exact mechanism(s) for this antitumor activity of p-XSC remains to be elucidated, it appears that modulation of beta-catenin expression and COX-2 activity is associated with inhibition of intestinal polyps.  相似文献   
4.
Epidemiological studies and laboratory animal model assays suggest that a high intake of dietary fat promotes colorectal cancer. Several in vivo and in vitro studies support the hypothesis that omega-6 fatty acids promote colon tumorigenesis, whereas omega-3 fatty acids lack promoting activity. Fat intake in the United States traditionally includes high amounts (30% of total caloric intake) of saturated fat rather than omega-6 fatty acids. Therefore, the present study was designed to compare the modulatory effects of a high-fat diet containing mixed lipids (HFML), a diet rich in saturated fatty acids (the average American diet), a diet with fish oil (HFFO) that is rich in omega-3 fatty acids, and a low-fat corn oil diet (LFCO) on the formation of chemically induced colonic aberrant crypt foci (ACF) and tumors, cyclooxygenase (COX)-2 activity, and apoptosis during experimental colon carcinogenesis. At 5 weeks of age, groups of male F344 rats were fed a 5% corn oil diet (LFCO). At 7 weeks of age, rats intended for carcinogen treatment received s.c. injections of azoxymethane at a dose level of 15 mg/kg of body weight once weekly for 2 weeks. Beginning 1 day after the carcinogen treatment, groups of rats were then maintained on experimental diets containing 20% HFML or 20% HFFO. Rats were killed at 8, 23, or 38 weeks after azoxymethane treatment. Colonic ACF and tumors were evaluated histopathologically, and apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated nick end labeling method. Colonic mucosae and tumor samples harvested at week 38 were analyzed for COX-2 synthetic activity and expression. The rats fed the HFML diet showed significantly increased total colonic ACF (P < 0.001-0.0001) with a multiplicity of > or = 4 aberrant crypts/focus (P < 0.0001) compared with the effects of the HFFO or LFCO diets at week 8, 23, and 38. Interestingly, there was a 2- to 3-fold increase (> or = 4) in multicrypt foci in rats given the HFML diet as compared with such foci in rats fed the HFFO or LFCO diets. By week 23, the HFML diet had significantly increased the incidence of colonic tumors (30-60%) and their multiplicity (100-141%) when compared with the effects of the LFCO or HFFO diets. At week 38, the HFML diet had induced 100% colon tumor incidence and a 4-fold multiplicity of adenocarcinomas compared with the LFCO and HFFO diets. At weeks 23 and 38, a significantly lower percentage of apoptotic colonic epithelial cells were observed in the tumors of animals fed the HFML diet as compared with those fed the HFFO diet. The HFML diet caused significantly increased levels of COX-2 activity in colon tumors (P < 0.05-0.01), and these tumors had enhanced levels of COX-2 expression as compared with those in assays with LFCO or HFFO diets. These observations demonstrate for the first time that HFML diets containing high levels of saturated fatty acids (such as those in Western diets) promote colon carcinogenesis. Although the mechanisms involved in colon tumor promotion by a HFML diet are not fully known, our results indicate that the modulation of eicosanoid production via the influence on COX activity and the suppression of apoptosis may play a key role in HFML diet-induced colon tumorigenesis.  相似文献   
5.
Mutations in the beta-glucocerebrosidase gene cause Gaucher disease with the type 1 variant generally presenting later in life with mild disease and type 2 in infancy with severe neuronopathic symptoms. We describe a neonate homozygous for the D409 H mutation with thrombocytopenia, splenomegaly and cholestasis at birth as the major features.  相似文献   
6.
7.
Apoptosis plays a central role in tumor development and it has been hypothesized that lack/failure of apoptosis leads to the development of tumors, including colon tumors. Thus, induction of apoptosis in tumor cells is an effective approach to the regulation of tumor growth. It has been shown by us and other investigators that various chemopreventive agents induce apoptosis and inhibit tumor growth. Identification of agents or combinations of agents that induce tumor cell apoptosis guides the development of novel agents for colon cancer treatment. Experiments were designed to assess the effectiveness of lovastatin, a 3-hydroxy-3-methyl glutaryl-CoA reductase inhibitor, and celecoxib a cyclooxygenase-2 inhibitor, individually or in combination on the induction of apoptosis in human HT-29 colon cancer cells. In addition, we studied the modulatory effect of lovastatin and celecoxib on lamin B levels, caspase-3 activity and expression in relationship to apoptosis in colon cancer cell lines. HT-29 cells exposed to various subtoxic levels of lovastatin or celecoxib or a combination of both were analyzed for apoptosis (by DAPI method), caspase-3 expression (immunoblot analysis) and caspase-3 activity (fluorimetric method). We found that: i) pretreatment with lovastatin (5-30 microM) induces apoptosis in HT-29 cells significantly only at high concentrations (> or = 20 microM) but not at low dose levels; ii) similarly, pretreatment with celecoxib produced apoptosis in colon cancer cells at high concentrations only (> or = 75 microM); iii) caspase-3 protein expression was moderately altered by the treatment with lovastatin or celecoxib at lower concentrations; however, a significant increase (1.6 to 4-fold) in caspase-3 expression and activity was found in HT-29 cells exposed with 20-25 microM lovastatin and/or 5-125 microM celecoxib and iv) importantly, in tumor cells exposed to low doses of (5 or 10 microM) lovastatin, combined with 25-75 microM of celecoxib, apoptosis induction rose 2.5 to 10-fold, caspase-3 expression was 2.3 to 8-fold higher, and enzyme activities were 1.5 to 5.5-fold elevated. This effect was highly synergistic and dose-dependent. Lamin B levels were significantly increased in a dose-dependent manner in cells treated with lovastatin but no such effect was observed with celecoxib. These results indicate that agents with different modes of action when applied in combinations will induce apoptosis synergistically by enhancing caspase-3 activities. These findings further support the hypothesis that HMGCo-R and COX-2 activities play important roles in apoptosis and regulation of apoptosis by selective agents such as lovastatin and celecoxib would provide effective strategies for the prevention of colon cancer.  相似文献   
8.
PURPOSE: To assess the chemopreventive effect of oleanolic acid (ONA) and its synthetic analog 18alpha-olean-12-ene-3beta-23,28-triol (OT) on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in F344 rats and understand anti-inflammatory properties and apoptosis effects in HT29 colon cancer cells and Raw 264.7 macrophage cell lines. METHODS: Five week-old male F344 rats were fed a control diet or experimental diets containing two doses of ONA (750 and 1,500 ppm) and OT (250 and 500 ppm). After 1 week, all animals were s.c. injected with AOM (15 mg/kg body weight, once weekly for 2 weeks). At 14 weeks of age, all rats were killed and colons were evaluated for ACF. Cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expressions and apoptosis were assessed in cell lines exposed to OT using western blots and 4',6-diamidino-2-phenylindole staining. RESULTS: Administration of ONA and OT inhibited mean colonic ACF and multi-crypt AC/foci in a dose dependent manner (p < 0.001-0.0001). OT blocked the COX-2 expression induced by phorbol 12-myristate 13-acetate in a dose-dependent manner and induced apoptosis in HT-29 cancer cells, and suppressed iNOS activation in RAW264.7 macrophages. CONCLUSIONS: ONA and OT possess chemopreventive activity against colon carcinogenesis in rat and OT inhibits the COX-2 and iNOS and induces apoptosis in cell lines.  相似文献   
9.
Epidemiological studies suggest that carotenoids such as beta-carotene and lutein play an important role in reducing the risk for several cancers. However, in colon cancer there is ambiguity with regard to the role of these compounds in that both preventive effects and tumor promotion have been observed. In the present study we observed that male F344 rats were able to tolerate up to 2,500 ppm of beta-carotene as well as of lutein. We have then assessed the chemopreventive efficacy of beta-carotene and lutein at dose levels of approximately 4 and 8% of the 2,500 ppm tolerated dose (TD) and also approximately 40 and 80% of the TD on azoxymethane (AOM)-induced colon carcinogenesis, using aberrant crypt foci (ACF) as a surrogate biomarker for colon cancer. Throughout the experiments, 5-week-old male F344 rats were fed the control diet (modified AIN-76A) or experimental diets containing 100 or 200 ppm (approximately 4 or 8% of the 2,500 ppm TD), or 1,000 or 2,000 ppm ( approximately 40 or 80% of the 2,500 ppm TD) of beta-carotene and lutein (n=10 rats/group). After 2 weeks on the experimental or control diets, all animals were injected with AOM (15 mg/kg body wt., once weekly for 2 weeks). At 14 weeks of age, all rats were killed, and their colons were evaluated for ACF. Administration of 100 or 200 ppm of beta-carotene inhibited AOM-induced total colonic ACF formation by 24% (p<0.01) and 36% (p<0.001), respectively, whereas lutein at 200 ppm produced a 27% inhibition (p<0.01) yet had no significant effect at the 100 ppm dose level. Surprisingly, administration of 1,000 or 2,000 ppm of beta-carotene and lutein increased colonic ACF formation in a dose-dependent manner, i.e., to 124% and 144% for the former and 110% and 159% for the latter. These results clearly suggest that further studies are warranted to determine whether the increase in ACF incidence by high doses of beta-carotene and lutein will also lead to an increase in tumor outcome. Taken together these data indicate that the chemopreventive activity of beta-carotene and lutein against colon carcinogenesis depends on the dose level.  相似文献   
10.
We have consistently shown that several synthetic Organoselenium compounds are superior cancer chemopreventive agents and less toxic than selenite or certain naturally occurring selenoamino acids. 1,4-Phenylenebis(methylene)selenocyanate (p-XSC) is the lead Organoselenium compound in that it has been shown to be the most effective and the least toxic agent in several experimental cancer models. It is not known whether p-XSC or one of its metabolites is responsible for its chemopreventive efficacy. As an initial step, we synthesized one of its putative metabolites, i.e., the glutathione conjugate of p-XSC (p-XSe-SG), and determined its stability in the pH range from 2 to 8 and in the diet under normal feeding conditions. We also assessed its maximum tolerated dose and examined its chemopreventive efficacy against azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. p-XSe-SG proved to be very stable over the pH range tested. The maximum tolerated dose of p-XSe-SG determined in a 6-week subchronic toxicity study was found to be >210 ppm (>40 ppm selenium) when the compound was added to AIN-76A high-fat diet. To assess the efficacy of this agent in the postinitiation period of colon carcinogenesis, male F344 rats 6 weeks of age were fed the high-fat diet, and at beginning of weeks 7 and 8, all of the rats intended for carcinogen treatment were given AOM at a dose of 15 mg/kg body weight by s.c. injection. Two days after the carcinogen treatment, the groups of rats consuming the high-fat control diet began their respective high-fat experimental diet regimens with 0, 56, or 84 ppm p-XSe-SG (0.1, 10, and 15 ppm of selenium) supplementation. All animals continued on their respective diets for 38 weeks after the AOM-treatment and were then killed. Colon tumors were evaluated histologically using routine procedures and were also analyzed for cyclooxygenase (COX)-1 and COX-2 expression and enzymatic activities. The results indicate that p-XSeSG administered during the post-initiation stage significantly inhibited both the incidence (P < 0.05-0.01) and the multiplicity (P < 0.05-0.005) of AOM-induced colon adenocarcinomas. This agent also greatly suppressed the multiplicity (P < 0.01-0.001) of AOM-induced exophytic adenocarcinomas in a dose-dependent manner. Feeding of 56 or 84 ppm p-XSe-SG in the diet significantly suppressed total COX activity (P < 0.02 to -0.01) and COX-2 specific activity (P < 0.005-0.0005) but had minimal effect on the protein expression levels of COX-1 and COX-2. These results suggest that the newly developed synthetic Organoselenium compound, p-XSe-SG, is stable in the diet and at wide pH ranges, inhibits colon carcinogenesis when administered during the postinitiation stage, and inhibits COX activity. Compared with previous efficacy studies and considering the toxicity associated with selenium, p-XSe-SG seems to be the least toxic Organoselenium chemopreventive agent thus far tested in the experimental colon carcinogenesis. Studies are in progress to delineate whether p-XSe-SG is also effective when administered during the progression stage of colon carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号