首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88001篇
  免费   10517篇
  国内免费   4798篇
耳鼻咽喉   922篇
儿科学   1558篇
妇产科学   775篇
基础医学   5309篇
口腔科学   1880篇
临床医学   11592篇
内科学   9296篇
皮肤病学   1168篇
神经病学   2599篇
特种医学   3800篇
外科学   7782篇
综合类   21523篇
现状与发展   13篇
预防医学   11837篇
眼科学   1040篇
药学   9170篇
  116篇
中国医学   8412篇
肿瘤学   4524篇
  2024年   481篇
  2023年   1428篇
  2022年   2775篇
  2021年   3559篇
  2020年   3268篇
  2019年   1725篇
  2018年   2227篇
  2017年   2808篇
  2016年   2283篇
  2015年   3849篇
  2014年   4764篇
  2013年   6187篇
  2012年   7606篇
  2011年   7953篇
  2010年   7365篇
  2009年   6710篇
  2008年   6429篇
  2007年   6177篇
  2006年   5461篇
  2005年   4269篇
  2004年   3049篇
  2003年   2478篇
  2002年   2012篇
  2001年   1898篇
  2000年   1311篇
  1999年   697篇
  1998年   446篇
  1997年   445篇
  1996年   447篇
  1995年   365篇
  1994年   282篇
  1993年   270篇
  1992年   230篇
  1991年   189篇
  1990年   176篇
  1989年   195篇
  1988年   169篇
  1987年   144篇
  1986年   133篇
  1985年   118篇
  1984年   105篇
  1983年   95篇
  1982年   83篇
  1981年   77篇
  1980年   48篇
  1979年   45篇
  1978年   37篇
  1977年   46篇
  1976年   43篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
声带运动障碍的病因和临床表现复杂多变,涉及多学科,从病因上分为神经源性和非神经源性。对于神经源性声带运动障碍的诊治,首先通过喉镜等检查明确有无声带运动障碍及严重程度,值得注意的是声带纵向张力变化障碍也属于运动障碍的范畴;然后采用喉肌电图(LEMG)检查进行定性分析,在确诊神经源性损伤后,进一步对神经损伤部位进行定位诊断并查找导致神经损伤的病因;同时根据喉部神经电生理评估结果,判断预后。最后综合上述的评估结果制定相应的治疗策略。  相似文献   
5.
痛风是一种常见的由尿酸盐沉积引起的慢性炎症性关节炎。该文总结了最新的痛风遗传学基础,发现痛风的高风险基因多数与肾脏和肠道尿酸盐转运系统相关。糖酵解基因是一种异于肾和肠道尿酸排泄的血清尿酸调控路径,也为痛风和其他相关的代谢性疾病提供了新的病因学线索。基因之间的相互作用、基因与环境危险因素之间的相互作用均与痛风的发病风险相关。  相似文献   
6.
7.
8.
9.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号