首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
耳鼻咽喉   1篇
儿科学   1篇
基础医学   29篇
临床医学   1篇
内科学   2篇
特种医学   2篇
外科学   6篇
眼科学   1篇
药学   29篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   3篇
  1970年   2篇
排序方式: 共有72条查询结果,搜索用时 426 毫秒
1.
2.
The study is concerned with morphological alterations in fetal and neonatal renal glomeruli in late gestosis. Nephropathy of pregnancy is established to be a factor of risk of renal dysembryogenesis, presenting with renal immaturity and focal dysplasias in mature fetuses and newborns as well as fraught with congenital glomerulopathies. The employment of immunofluorescence techniques permitted clarification of immune complex pathogenetic role in development of fetal and neonatal glomerulopathies in late gestosis. The results of the study support the necessity for antenatal protection of the fetus aimed at pathogenetic prophylaxis of congenital nephropathies.  相似文献   
3.
The smooth pursuit system moves the eyes in space accurately while compensating for visual inputs from the moving background and/or vestibular inputs during head movements. To understand the mechanisms underlying such interactions, we examined the influence of a stationary textured visual background on smooth pursuit tracking and compared the results in young and adult humans and monkeys. Six humans (three children, three adults) and six macaque monkeys (five young, one adult) were used. Human eye movements were recorded using infrared oculography and evoked by a sinusoidally moving target presented on a computer monitor. Scleral search coils were used for monkeys while they tracked a target presented on a tangent screen. The target moved in a sinusoidal or trapezoidal fashion with or without whole body rotation in the same plane. Two kinds of backgrounds, homogeneous and stationary textured, were used. Eye velocity gains (eye velocity/target velocity) were calculated in each condition to compare the influence of the textured background. Children showed asymmetric eye movements during vertical pursuit across the textured (but not the homogeneous) background; upward pursuit was severely impaired, and consisted mostly of catch-up saccades. In contrast, adults showed no asymmetry during pursuit across the different backgrounds. Monkeys behaved similarly; only slight effects were observed with the textured background in a mature monkey, whereas upward pursuit was severely impaired in young monkeys. In addition, VOR cancellation was severely impaired during upward eye and head movements, resulting in residual downward VOR in young monkeys. From these results, we conclude that the directional asymmetry observed in young primates may reflect a different neural organization of the vertical, particularly upward, pursuit system in the face of conflicting visual and vestibular inputs that can be associated with pursuit eye movements. Apparently, proper compensation matures later. Electronic Publication  相似文献   
4.
The caudal parts of the frontal eye fields (FEF) contain smooth-pursuit related neurons. Previous studies show that most FEF pursuit neurons carry visual signals in relation to frontal spot motion and discharge before the initiation of smooth-pursuit. It has also been demonstrated that most FEF pursuit neurons discharge during vergence tracking. Accurate vergence tracking requires information about target motion-in-depth. To further understand the role of the FEF in vergence tracking and to determine whether FEF pursuit neurons carry visual information about target motion-in-depth, we examined visual and vergence eye movement-related responses of FEF pursuit neurons to sinusoidal spot motion-in-depth. During vergence tracking, most FEF pursuit neurons exhibited both vergence eye position and velocity sensitivity. Phase shifts (re target velocity) of most neurons remained virtually constant up to 1.5 Hz. About half of FEF pursuit neurons exhibited visual responses to spot motion-in-depth. The preferred directions for visual responses of most neurons were similar to those during vergence tracking. Visual responses of most of these neurons exhibited sensitivity to the velocity of spot motion-in-depth. Phase shifts of most of the responding neurons remained virtually constant up to 2.0 Hz. Neurons that exhibited visual responses in-depth were mostly separate from neurons that showed visual responses in the frontal plane. To further examine whether FEF pursuit neurons could participate in initiation of vergence tracking, we examined latencies of neuronal responses with respect to vergence eye movements induced by step target motion-in-depth. About half of FEF pursuit neurons discharged before the onset of vergence eye movements with lead times longer than 20 ms. These results together with previous observations suggest that the caudal FEF carries visual signals appropriate to be converted into motor commands for pursuit in depth and frontal plane.  相似文献   
5.
Clear vision of objects that move in depth toward or away from an observer requires vergence eye movements. The vergence system must interact with the vestibular system to maintain the object images on the foveae of both eyes during head movement. Previous studies have shown that training with sinusoidal vergence-vestibular interaction improves the frequency response of vergence eye movements during pitch rotation: vergence eye velocity gains increase and phase-lags decrease. To further understand the changes in eye movement responses in this adaptation, we examined latencies of vergence eye movements before and after vergence-vestibular training. Two head-stabilized Japanese monkeys were rewarded for tracking a target spot moving in depth that required vergence eye movements of 10°/s. This target motion was synchronized with pitch rotation at 20°/s. Both target and chair moved in a trapezoidal waveform interspersed with random inter-trial intervals. Before training, pitch rotation in complete darkness without a target did not induce vergence eye movements. Mean latencies of convergence and divergence eye movements induced by vergence target motion alone were 182 and 169 ms, respectively. After training, mean latencies of convergence and divergence eye movements to a target synchronized with pitch rotation shortened to 65 and 53 ms, and vergence eye velocity gains (relative to vergence target velocity) at the normal latencies were 0.68 and 1.53, respectively. Pitch rotation alone without a target induced vergence eye movements with similar latencies after training. These results indicate that vestibular information can be used effectively to initiate vergence eye movements following vergence-vestibular training.  相似文献   
6.
7.
8.
The smooth pursuit system and the vestibular system interact to keep the retinal target image on the fovea by matching the eye velocity in space to target velocity during head and/or whole body movement. The caudal part of the frontal eye fields (FEF) in the fundus of the arcuate sulcus contains pursuit-related neurons and the majority of them respond to vestibular stimulation induced by whole body movement. To understand the role of FEF pursuit neurons in the interaction of vestibular and pursuit signals, we examined the latency and time course of discharge modulation to horizontal whole body rotation during different vestibular task conditions in head-stabilized monkeys. Pursuit neurons with horizontal preferred directions were selected, and they were classified either as gaze-velocity neurons or eye/head-velocity neurons based on the previous criteria. Responses of these neurons to whole body step-rotation at 20 degrees/s were examined during cancellation of the vestibulo-ocular reflex (VOR), VOR x1, and during chair steps in complete darkness without a target (VORd). The majority of pursuit neurons tested (approximately 70%) responded during VORd with latencies <80 ms. These initial responses were basically similar in the three vestibular task conditions. The shortest latency was 20 ms and the modal value was 24 ms. These responses were also similar between gaze-velocity neurons and eye/head-velocity neurons, indicating that the initial responses (<80 ms) were vestibular responses induced by semicircular canal inputs. During VOR cancellation and x1, discharge of the two groups of neurons diverged at approximately 90 ms following the onset of chair rotation, consistent with the latencies associated with smooth pursuit. The shortest latency to the onset of target motion during smooth pursuit was 80 ms and the modal value was 95 ms. The time course of discharge rate difference of the two groups of neurons between VOR cancellation and x1 was predicted by the discharge modulation associated with smooth pursuit. These results provide further support for the involvement of the caudal FEF in integration of vestibular inputs and pursuit signals.  相似文献   
9.
Pharmaceutical Chemistry Journal - A quantitative procedure was developed for determining total flavonoids in horse chestnut buds (Aesculus hippocastanum L.) using differential spectrophotometry at...  相似文献   
10.
Pharmaceutical Chemistry Journal - An HPLC method for quantitative determination of myricitrin in black walnut (Julgans nigra L.) bark was developed. The content of the dominant flavonoid...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号