首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   10篇
  国内免费   5篇
儿科学   2篇
妇产科学   3篇
基础医学   25篇
临床医学   28篇
内科学   29篇
皮肤病学   11篇
神经病学   1篇
外科学   19篇
预防医学   2篇
眼科学   1篇
药学   10篇
中国医学   1篇
肿瘤学   7篇
  2022年   1篇
  2021年   12篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   10篇
  2011年   12篇
  2010年   12篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   9篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有139条查询结果,搜索用时 0 毫秒
1.
We have developed a system to measure the changes due to heating to high temperatures in the dielectric properties of tissues in the radio-frequency range. A two-electrode arrangement was connected to a low-frequency impedance analyser and used to measure the dielectric properties of ex vivo porcine kidney and fat at 460 kHz. This frequency was selected as it is the most commonly used for radio-frequency thermal therapy of renal tumours. Tissue samples were heated to target temperatures between 48 and 78 degrees C in a hot water bath and changes in dielectric properties were measured during 30 min of heating and 15 min of cooling. Results suggest a time-temperature dependence of dielectric properties, with two separate components: one a reversible, temperature-dependent effect and the other a permanent effect due to structural events (e.g. protein coagulation, fat melting) that occur in tissues during heating. We calculated temperature coefficients of 1.3 +/- 0.1% degrees C(-1) for kidney permittivity and 1.6% degrees C(-1) for kidney conductivity, 0.9 +/- 0.1% degrees C(-1) for fat permittivity and 1.7 +/- 0.1% degrees C(-1) for fat conductivity. An Arrhenius model was employed to determine the first-order kinetic rates for the irreversible changes in dielectric properties. The following Arrhenius parameters were determined: an activation energy of 57 +/- 5 kcal mol(-1) and a frequency factor of (6 +/- 1) x 10(34) s(-1) for conductivity of kidney, an activation energy of 48 +/- 2 kcal mol(-1) and a frequency factor of 6 x 10(28) s(-1) for permittivity of kidney. A similar analysis led to an activation energy of 31 +/- 4 kcal mol(-1) and a frequency factor of (4.43 +/- 1) x 10(16) s(-1) for conductivity of fat, and an activation energy of 40 +/- 4 kcal mol(-1) and a frequency factor of 4 x 10(22) s(-1) for permittivity of fat. Structural events occurring during heating at different target temperatures as determined by histological analyses were correlated with the changes in the measured dielectric properties.  相似文献   
2.
3.
4.
Interleukin-13 inhibits nitric oxide production in human colonic mucosa   总被引:5,自引:0,他引:5  
BACKGROUND/AIMS: Nitric oxide synthesis is increased in rectal biopsies from patients with ulcerative colitis and colonic epithelial cells are considered to be a major source of nitric oxide in intestinal inflammation. METHODOLOGY: Human colonic biopsies from normal bowel mucosa and colonic epithelial cell line HT-29 were cultured in the presence of the inflammatory cytokines IL-1 alpha + TNF-alpha + IFN-alpha added after 1 hour pretreatment with vehicle or Interleukin-13. Nitrite levels were determined at 30 hours in culture supernatants by a fluorometric assay. RESULTS: Unstimulated human colonic biopsies and HT-29 cells produced a basal amount of nitrite. Stimulation with IL-1 alpha + TNF-alpha + IFN-alpha induced a significant (P < 0.001) increase of nitrite generation by both human colonic biopsies and HT-29 cells. The presence of Interleukin-13 produced a significant (P < 0.001) suppression of the cytokine-induced nitrite generation from both colonic biopsies and HT-29 cells. CONCLUSIONS: Nitric oxide generation in human colonic mucosa is susceptible to manipulation by proinflammatory cytokines. Interleukin-13 has an inhibitory effect on cytokine induced nitrite production in colonic mucosa and could play an anti-inflammatory role in intestinal inflammation.  相似文献   
5.
Kupffer cells (KC) and lipopolysaccharide (LPS) interaction is the initial event leading to hepatic inflammation and fibrosis in many types of liver injury. We studied chemokine secretion by KC activated with LPS and the possible effect of the somatostatin analogue octreotide, in the regulation of this process. KC isolated from Sprague-Dawley rats were cultured in the presence of LPS added alone or with different concentrations of octreotide for 24 and 48 h, and chemokine production was assessed in culture supernatants by ELISA. CC chemokine mRNA expression was assessed by semiquantitative RT-PCR. Vehicle-stimulated KC produced a basal amount of CC and CXC chemokines. LPS-stimulated KC secreted significantly increased amounts of IL-8 (GRO/CINC-1) (P<0.001), MIP-2 (P<0.001), MCP-1 (P<0.001), and RANTES (P<0.01). Octreotide inhibited LPS-induced secretion of the CC chemokines MCP-1 (P<0.05) and RANTES (P<0.05), but not the CXC chemokines IL-8 (GRO/CINC-1) and MIP-2, in a concentration-dependent manner. Downregulation of basal and LPS-induced mRNA expression of the CC chemokines was also observed in the presence of octreotide. Pretreatment with phosphatidylinositol 3 (PI3)-kinase inhibitors reduced chemokine production by LPS-treated KC in both the mRNA and protein level. Furthermore, it prevented the octreotide inhibitory effect on LPS-induced chemokine secretion, indicating a possible involvement of the PI3-kinase pathway. In conclusion, these data demonstrate that chemokine secretion by KC can be differentially regulated by octreotide, and suggest that this somatostatin analogue may have immunoregulatory effects on resident liver macrophages.British Journal of Pharmacology (2004) 141, 477-487. doi:10.1038/sj.bjp.0705633  相似文献   
6.
7.
Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 degrees C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 degrees C mm(-1) close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three dimensional vessel path observed could account for the complex features of the temperature profiles. The flow dependences of the transient temperature profiles near large vessels during the pulsed experiments were consistent with the temperature distributions measured in the steady state experiments and provided unique insights into the process of convective heat transfer in tissues. Finally, it was shown that even for very short treatment times (3-20 s), large vessels had significant effects on the tissue temperature distributions.  相似文献   
8.

Summary  

In this study, short-term, whole-body vertical vibration at 90 Hz improved trabecular bone quality. There was an improvement of bone quality and density in both osteoporotic and control rats. This treatment may therefore be an attractive option for the treatment of osteoporosis.  相似文献   
9.
10.
High frequency ultrasound imaging (20 to 60 MHz) is increasingly being used in small animal imaging, molecular imaging and for the detection of structural changes during cell and tissue death. Ultrasonic tissue characterization techniques were used to measure the speed of sound, attenuation coefficient and integrated backscatter coefficient for (a) acute myeloid leukemia cells and corresponding isolated nuclei, (b) human epithelial kidney cells and corresponding isolated nuclei, (c) multinucleated human epithelial kidney cells and d) human breast cancer cells. The speed of sound for cells varied from 1522 to 1535 m/s, while values for nuclei were lower, ranging from 1493 to 1514 m/s. The attenuation coefficient slopes ranged from 0.0798 to 0.1073 dB mm(-1) MHz(-1) for cells and 0.0408 to 0.0530 dB mm(-1) MHz(-1) for nuclei. Integrated backscatter coefficient values for cells and isolated nuclei showed much greater variation and increased from 1.71 x 10(-4) Sr(-1) mm(-1) for the smallest nuclei to 26.47 x 10(-4) Sr(-1) mm(-1) for the cells with the largest nuclei. The findings suggest that integrated backscatter coefficient values, but not attenuation or speed of sound, are correlated with the size of the nuclei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号