首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
药学   13篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
排序方式: 共有13条查询结果,搜索用时 46 毫秒
1.
The efficacy of central nervous system (CNS) drugs may be limited by their poor ability to cross the blood-brain barrier (BBB). Transporters, such as p-glycoprotein, may affect the distribution of many drugs into the CNS in conjunction with the restricted paracellular pathway of the BBB. It is therefore important to gain information on unbound drug concentrations in the brain in drug development to ensure sufficient drug exposure from plasma at the target site in the CNS. In vitro methods are routinely used in drug development to study passive permeability and p-glycoprotein efflux of new drugs. This review discusses the challenges in the use of in vitro data as input parameters in physiologically based pharmacokinetic (PBPK) models of CNS drug disposition of p-glycoprotein substrates. Experience with quinidine demonstrates the variability in in vitro parameters of passive permeability and active p-glycoprotein efflux. Further work is needed to generate parameter values that are independent of the model and assay. This is a prerequisite for reliable predictions of drug concentrations in the brain in vivo.  相似文献   
2.
ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1–6 (MRP1–6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:1087–1098, 2010  相似文献   
3.
Monocarboxylate transporters (MCTs) are transmembrane proteins capable of transferring lactate and other endogenous and exogenous monocarboxylates across the cell membrane. The aim of the present study was to assess the expression and transporter role of human MCT1, MCT3 and MCT4 in the corneal epithelium, corneal epithelial cell lines (primary HCEpiC and immortalized HCE cells) and isolated rabbit corneas. MCT1 and MCT4 were expressed in the human corneal epithelium and the cell lines at mRNA and protein levels. Cellular uptake studies showed saturable and pH-dependent l-lactic acid transport, which was inhibited by various monocarboxylates like diclofenac and flurbiprofen. The permeability of benzoic acid across the rabbit cornea was higher in absorptive direction and this directionality was diminished in the presence of monocarboxylate drug valproic acid. Monocarboxylate transport was functional in the human corneal epithelial cells and rabbit cornea and it may play a role in the ocular drug absorption.  相似文献   
4.
The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay is a widely used method in assessment of cytotoxicity and cell viability, and also in anti-cancer drug studies with tumour cells. These cells often express efflux proteins, such as P-glycoprotein (MDR1) or multidrug resistance (MDR) protein 1 (MRP1). MDCKII cells that overexpress these proteins (MDCKII-MDR1 or MDCKII-MRP1) and normal cells (MDCKII-wt) were used to investigate the effects of efflux pump activity on the results of MTT assay. Efflux protein activity was confirmed with calcein-AM efflux assay, and MTT assay was compared to another cytotoxicity test, the LDH release assay. Inhibition of MRP and MDR1 efflux proteins in MDCKII cell lines was associated paradoxically with increased reduction of MTT, implying an apparent increase in cell viability. This effect was seen when MK 571 (MRP1 and MRP2 inhibitor) or verapamil (MRP1 and MDR1 inhibitor) were used to block efflux protein activity. The calcein-AM efflux assay also showed that the MTT reagent inhibits the function of MDR1 in the MDCKII-MDR1 cell line. This study shows that MDR1 and possibly MRP proteins interfere with the MTT assay. Due to wide substrate specificity of efflux proteins and popularity of the MTT assay this interference is not trivial. Presence of any efflux protein substrate may therefore lead to underestimated results in MTT assay, thereby causing potential bias and erroneous conclusions in cytotoxicity studies.  相似文献   
5.

Purpose  

To develop a computational model for optimisation of low corneal permeability, which is a key feature in ocular drug development.  相似文献   
6.
Purpose. To determine corneal absorption and desorption rate constants in a corneal epithelial cell culture model and to apply them to predict ocular pharmacokinetics after topical ocular drug application. Method. In vitro permeation experiments were performed with a mixture of six -blockers using an immortalized human corneal epithelial cell culture model. Disappearance of the compounds from the apical donor solution and their appearance in the basolateral receiver solution were determined and used to calculate the corneal absorption and desorption rate constants. An ocular pharmacokinetic simulation model was constructed for timolol with the Stella® program using the absorption and desorption rate constants and previously published in vivo pharmacokinetic parameters. Results. The corneal absorption rates of -blockers increased significantly with the lipophilicity of the compounds. The pharmacokinetic simulation model gave a realistic mean residence time for timolol in the cornea (57 min) and the aqueous humor (90 min). The simulated timolol concentration in the aqueous humor was about 1.8 times higher than the previously published experimental values. Conclusions. The simulation model gave a reasonable estimate of the aqueous humor concentration profile of timolol. This was the first attempt to combine cell culture methods and pharmacokinetic modeling for prediction of ocular pharmacokinetics. The wider applicability of this approach remains to be seen.  相似文献   
7.
A cell culture model of human corneal epithelium (HCE-model) was recently introduced [Invest. Ophthalmol. Vis. Sci. 42 (2001) 2942] as a tool for ocular drug permeation studies. In this study, passive permeability and esterase activity of the HCE-model were characterised. Immortalised human corneal epithelial cells were grown on collagen coated filters under air-lift. The sensitivity of transcellular permeability to lipophilicity was tested in studies using nine beta-blockers. The size selectivity of the paracellular route was investigated using 16 polyethylene glycol oligomers (PEG). An effusion-like approach was used to estimate porosity and pore sizes of the paracellular space in HCE membrane. Permeability and degradation of fluorescein diacetate to fluorescein in HCE-cells was used to probe the esterase activity of the HCE-model. Drug concentrations were analyzed using HPLC (beta-blockers), LC-MS (PEGs), and fluorometry (fluorescein). Permeabilities were compared to those in the excised rabbit cornea. Penetration of beta-blockers increased with lipophilicity according to a sigmoidal relationship. This was almost similar to the profile in excised cornea. No apical to basolateral directionality was seen in the permeation of beta-blockers. Paracellular permeability of the HCE-model was generally slightly higher than that of the excised rabbit cornea. The HCE-model has larger paracellular pores, but lower pore density than the excised cornea, but the overall paracellular space was fairly similar in both models. The HCE-model shows significant esterase activity (i.e. fluorescein diacetate was converted to free fluorescein). These data on permeability of 27 compounds demonstrate that the barrier of the HCE-model closely resembles that of the excised rabbit cornea. Therefore, the HCE-model is a promising alternative corneal substitute for ocular drug delivery studies.  相似文献   
8.
Corneal epithelium and blood-retina barrier (i.e. retinal capillaries and retinal pigment epithelium (RPE)) are the key membranes that regulate the access of xenobiotics into the ocular tissues. Corneal epithelium limits drug absorption from the lacrimal fluid into the anterior chamber after eyedrop administration, whereas blood-retina barrier restricts the entry of drugs from systemic circulation to the posterior eye segment. Like in general pharmacokinetics, the role of transporters has been considered to be quite limited as compared to the passive diffusion of drugs across the membranes. As the functional role of transporters is being revealed it has become evident that the transporters are widely important in pharmacokinetics. This review updates the current knowledge about the transporters in the corneal epithelium and blood-retina barrier and demonstrates that the information is far from complete. We also show that quite many ocular drugs are known to interact with transporters, but the studies about the expression and function of those transporters in the eye are still sparse. Therefore, the transporters probably have greater role in ocular pharmacokinetics than we currently realise.  相似文献   
9.
10.

Purpose

Alzheimer’s disease (AD) may disturb functions of the blood-brain barrier and change the disposition of drugs to the brain. This study assessed the disease-induced changes in drug transporters in the brain capillaries of transgenic AD mice.

Methods

Eighteen drug transporters and four tight junction-associated proteins were analyzed by RT-qPCR in cortex, hippocampus and cerebellum tissue samples of 12–16-month-old APdE9, Tg2576 and APP/PS1 transgenic mice and their healthy age-matched controls. In addition, microvessel fractions enriched from 1-3-month-old APdE9 mice were analyzed using RT-qPCR and Western blotting. Brain transport of methotrexate in APdE9 mice was assessed by in vivo microdialysis.

Results

The expression profiles of studied genes were similar in brain tissues of AD and control mice. Instead, in the microvessel fraction in APdE9 mice, >2-fold alterations were detected in the expressions of 11 genes but none at the protein level. In control mice strains, >5-fold changes between different brain regions were identified for Slc15a2, Slc22a3 and occludin. Methotrexate distribution into hippocampus of APdE9 mice was faster than in controls.

Conclusions

The expression profile of mice carrying presenilin and amyloid precursor protein mutations is comparable to controls, but clear regional differences exist in the expression of drug transporters in brain.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号