首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   10篇
耳鼻咽喉   2篇
儿科学   1篇
基础医学   26篇
临床医学   1篇
内科学   7篇
神经病学   4篇
外科学   2篇
预防医学   2篇
眼科学   29篇
药学   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   7篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   11篇
  2008年   3篇
  2007年   8篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
Autophagy and apoptosis are crucial cellular housekeeping and tissue survival mechanisms. There is emerging evidence of important crosstalk between apoptosis and autophagy which can be linked to inflammasome activation. Beclin 1 is a platform protein which assembles an interactome consisting of diverse proteins which control the initiation of autophagocytosis and distinct phases in endocytosis. Recent studies have demonstrated that the anti-apoptotic Bcl-2 family members can interact with Beclin 1 and inhibit autophagy. Consequently, impaired autophagy can trigger inflammasome activation. Interestingly, the hallmarks of the ageing process include a decline in autophagy, increased resistance to apoptosis and a low-grade inflammatory phenotype. Age-related stresses, e.g. genotoxic, metabolic and environmental insults, enhance the expression of NF-κB-driven anti-apoptotic Bcl-2 proteins which repress the Beclin 1-dependent autophagy. Suppression of autophagocytosis provokes inflammation including NF-κB activation which further potentiates anti-apoptotic defence. In a context-dependent manner, this feedback defence mechanism can enhance the aging process or provoke tumorigenesis or cellular senescence. We will review the role of Beclin 1 interactome in the crosstalk between apoptosis, autophagy and inflammasomes emphasizing that disturbances in Beclin 1-dependent autophagy can have a crucial impact on the aging process.  相似文献   
2.
Climatic droplet keratopathy (CDK) is an acquired and potentially handicapping cornea degenerative disease that is highly prevalent in certain rural communities around the world. It predominantly affects males over their forties. It has many other names such as Bietti's band‐shaped nodular dystrophy, Labrador keratopathy, spheroidal degeneration, chronic actinic keratopathy, oil droplet degeneration, elastoid degeneration and keratinoid corneal degeneration. CDK is characterized by the haziness and opalescence of the cornea's most anterior layers which go through three stages with increasing severity. Globular deposits of different sizes may be histopathologically observed under the corneal epithelium by means of light and electron microscopy. The coalescence and increased volume of these spherules may cause the disruption of Bowman's membrane and the elevation and thinning of the corneal epithelium. The exact aetiology and pathogenesis of CDK are unknown, but they are possibly multifactorial. The only treatment in CDK advanced cases is a corneal transplantation, which in different impoverished regions of the world is not an available option. Many years ago, the clinical and histological aspects of this disease were described in several articles. This review highlights new scientific evidence of the expanding knowledge on CDK's pathogenesis which will open the prospect for new therapeutic interventions.  相似文献   
3.
Inflammaging refers to a low-grade pro-inflammatory phenotype which accompanies aging in mammals. The aging process is associated with a decline in autophagic capacity which impairs cellular housekeeping, leading to protein aggregation and accumulation of dysfunctional mitochondria which provoke reactive oxygen species (ROS) production and oxidative stress. Recent studies have clearly indicated that the ROS production induced by damaged mitochondria can stimulate intracellular danger-sensing multiprotein platforms called inflammasomes. Nod-like receptor 3 (NLRP3) can be activated by many danger signals, e.g. ROS, cathepsin B released from destabilized lysosomes and aggregated proteins, all of which evoke cellular stress and are involved in the aging process. NLRP3 activation is also enhanced in many age-related diseases, e.g. atherosclerosis, obesity and type 2 diabetes. NLRP3 activates inflammatory caspases, mostly caspase-1, which cleave the inactive precursors of IL-1β and IL-18 and stimulate their secretion. Consequently, these cytokines provoke inflammatory responses and accelerate the aging process by inhibiting autophagy. In conclusion, inhibition of autophagic capacity with aging generates the inflammaging condition via the activation of inflammasomes, in particular NLRP3. We will provide here a perspective on the current research of the ROS-dependent activation of inflammasomes triggered by the decline in autophagic cleansing of dysfunctional mitochondria.  相似文献   
4.
5.
6.
Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator of energy metabolic homeostasis and thus a major survival factor in a variety of metabolic stresses and also in the aging process. Metabolic syndrome is associated with a low-grade, chronic inflammation, primarily in adipose tissue. A low-level of inflammation is also present in the aging process. There are emerging results indicating that AMPK signaling can inhibit the inflammatory responses induced by the nuclear factor-κB (NF-κB) system. The NF-κB subunits are not direct phosphorylation targets of AMPK, but the inhibition of NF-κB signaling is mediated by several downstream targets of AMPK, e.g., SIRT1, PGC-1α, p53, and Forkhead box O (FoxO) factors. AMPK signaling seems to enhance energy metabolism while it can repress inflammatory responses linked to chronic stress, e.g., in nutritional overload and during the aging process. AMPK can inhibit endoplasmic reticulum and oxidative stresses which are involved in metabolic disorders and the aging process. Interestingly, many target proteins of AMPK are so-called longevity factors, e.g., SIRT1, p53, and FoxOs, which not only can increase the stress resistance and extend the lifespan of many organisms but also inhibit the inflammatory responses. The activation capacity of AMPK declines in metabolic stress and with aging which could augment the metabolic diseases and accelerate the aging process. We will review the AMPK pathways involved in the inhibition of NF-κB signaling and suppression of inflammation. We also emphasize that the capacity of AMPK to repress inflammatory responses can have a significant impact on both healthspan and lifespan.  相似文献   
7.
Elevated nuclear factor kappa B (NF-κB) activity and interleukin-6 (IL-6) secretion participates in the pathology of several age and inflammatory-related diseases, including age-related macular degeneration (AMD), in which retinal pigment epithelial cells are the key target. Recent findings reveal that heat shock protein 70 (Hsp70) may affect regulation of NF-κB. In the current study, effects of Hsp70 expression on NF-κB RelA/p65 activity were evaluated in human retinal pigment epithelial cells (ARPE-19) by using celastrol, a novel anti-inflammatory compound. Anti-inflammatory properties of celastrol were determined by measuring expression levels of IL-6 and endogenous NF-κB levels during lipopolysaccharide (LPS) exposure by using enzyme-linked immunosorbent assays (ELISA). Cell viability was measured by MTT and LDH assay, and Hsp70 expression levels were analyzed by Western blotting. ARPE-19 cells were transfected with hsp70 small interfering RNA (siRNA) in order to attenuate Hsp70 expression and activity of NF-κB RelA/p65 was measured using NF-κB consensus bound ELISA.Simultaneous exposures to LPS and celastrol reduced IL-6 expression levels as well as activity of phosphorylated NF-κB at serine 536 (Ser536) in ARPE-19 cells when compared to LPS exposure alone. In addition, inhibition of NF-κB RelA/p65 activity by celastrol was attenuated when Hsp70 response was silenced by siRNA. Favorable anti-inflammatory concentrations of celastrol showed no signs of cytotoxic response. Our findings reveal that celastrol is a novel plant compound which suppresses innate immunity response in human retinal pigment epithelial cells via NF-κB and Hsp70 regulation, and that Hsp70 is a critical regulator of NF-κB.  相似文献   
8.
The influences of targeted heterozygous inactivation of type II (pro)collagen gene (Col2a1) on eye structures in the 15-month-old C57BL/6JOlaHsd mouse was studied. The eyes were collected from C57BL mice heterozygous for a targeted inactivation of one allele of the Col2a1 gene (Col2a1(+/-) mice). The eyes of C57BL mice with normal gene alleles were used as controls (Col2a1(+/+) mice). Ocular histology was analyzed from tissue sections, stained with hematoxylin and eosin, toluidine blue and alcian blue. Type II collagen was localized by immunohistochemistry. Hyaluronan (HA) was stained utilizing the biotinylated complex of the hyaluronan-binding region of aggrecan and link protein (bHABC). The anterior segment of the eye was well-formed in both genotypes, but typical folding of ciliary processes was decreased, while increased stromal extracellular matrix vacuolization was seen in the Col2a1(+/-) mice. In the lens of these mice, subcapsular extracellular matrix changes were observed. Differences in retinal structures or the number of the eyes with retinal detachment were not detected between the genotypes. In Col2a1(+/-) mice, staining for type II collagen was weaker in cornea, ciliary body, iris, lens, vitreous, retina, choroid and sclera than in the control mice. HA staining was detected in the extraocular tissues, ciliary body, iris and the choroid of both genotypes. HA staining was observed only in the vitreous body of the control animals. Heterozygous inactivation of Col2a1 gene causes structural defects in the murine eye. The observed structural changes in the ciliary body, lens and vitreous of the Col2a1(+/-) mice may represent ocular features found in the human Stickler syndrome, where the abnormalities result from COL2A1 gene mutations which lead to functional haploinsufficiency.  相似文献   
9.
Innate and adaptive immunity are the major defence mechanisms of higher organisms against inherent and environmental threats. Innate immunity is present already in unicellular organisms but evolution has added novel adaptive immune mechanisms to the defence armament. Interestingly, during aging, adaptive immunity significantly declines, a phenomenon called immunosenescence, whereas innate immunity seems to be activated which induces a characteristic pro-inflammatory profile. This process is called inflamm-aging. The recognition and signaling mechanisms involved in innate immunity have been conserved during evolution. The master regulator of the innate immunity is the NF-kB system, an ancient signaling pathway found in both insects and vertebrates. The NF-kB system is in the nodal point linking together the pathogenic assault signals and cellular danger signals and then organizing the cellular resistance. Recent studies have revealed that SIRT1 (Sir2 homolog) and FoxO (DAF-16), the key regulators of aging in budding yeast and Caenorhabditis elegans models, regulate the efficiency of NF-kB signaling and the level of inflammatory responses. We will review the role of innate immunity signaling in the aging process and examine the function of NF-kB system in the organization of defence mechanisms and in addition, its interactions with the protein products of several gerontogenes. Our conclusion is that NF-kB signaling seems to be the culprit of inflamm-aging, since this signaling system integrates the intracellular regulation of immune responses in both aging and age-related diseases.  相似文献   
10.
Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimer's disease (AD), including stress stimuli such as oxidative stress and inflammation. In both diseases, the detrimental intra- and extracellular deposits have many similarities. Aging, hypercholesterolaemia, hypertension, obesity, arteriosclerosis, and smoking are risk factors to develop AMD and AD. Cellular aging processes have similar organelle and signaling association in the retina and brain tissues. However, it seems that these diseases have a different genetic background. In this review, differences and similarities of AMD and AD are thoroughly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号