首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
基础医学   5篇
临床医学   2篇
内科学   7篇
神经病学   3篇
外科学   1篇
预防医学   2篇
药学   14篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2003年   4篇
  2001年   1篇
  1999年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1966年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Platyspondylic lethal skeletal dysplasia (PLSD) Torrance type (PLSD-T) is a rare skeletal dysplasia characterized by platyspondyly, brachydactyly, and metaphyseal changes. Generally a perinatally lethal disease, a few long-term survivors have been reported. Recently, mutations in the carboxy-propeptide of type II collagen have been identified in two patients with PLSD-T, indicating that PLSD-T is a type 2 collagen-associated disorder. We studied eight additional cases of PLSD-T and found that all had mutations in the C-propeptide domain of COL2A1. The mutational spectrum includes missense, stop codon and frameshift mutations. All non-sense mutations were located in the last exon, where they would escape non-sense-mediated RNA-decay. We conclude that PLSD-T is caused by mutations in the C-propeptide domain of COL2A1, which lead to biosynthesis of an altered collagen chain (as opposed to a null allele). Similar mutations have recently been found to be the cause of spondyloperipheral dysplasia, a non-lethal dominant disorder whose clinical and radiographical features overlap those of the rare long-term survivors with PLSD-T. Thus, spondyloperipheral dysplasia and PLSD-T constitute a novel subfamily within the type II collagenopathies, associated with specific mutations in the C-propeptide domain and characterized by distinctive radiological features including metaphyseal changes and brachydactyly that set them apart from other type 2 collagenopathies associated with mutations in the triple-helical domain of COL2A1. The specific phenotype of C-propeptide mutations could result from a combination of diminished collagen fibril formation, toxic effects through the accumulation of unfolded collagen chains inside the chondrocytes, and alteration of a putative signaling function of the carboxy-propeptide of type 2 collagen.  相似文献   
2.
P Jaako  S Debnath  K Olsson  D Bryder  J Flygare  S Karlsson 《Blood》2012,120(11):2225-2228
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.  相似文献   
3.
Diamond-Blackfan anemia is a congenital erythroid hypoplasia caused by functional haploinsufficiency of genes encoding ribosomal proteins. Mutations involving the ribosomal protein S19 gene are detected in 25% of patients. Enforced expression of ribosomal protein S19 improves the overall proliferative capacity, erythroid colony-forming potential and erythroid differentiation of hematopoietic progenitors from ribosomal protein S19-deficient patients in vitro and in vivo following xenotransplantation. However, studies using animal models are needed to assess the therapeutic efficacy and safety of the viral vectors. In the present study we have validated the therapeutic potential of gene therapy using mouse models of ribosomal protein S19-deficient Diamond-Blackfan anemia. Using lentiviral gene transfer we demonstrated that enforced expression of ribosomal protein S19 cures the anemia and lethal bone marrow failure in recipients transplanted with ribosomal protein S19-deficient cells. Furthermore, gene-corrected ribosomal protein S19-deficient cells showed an increased pan-hematopoietic contribution over time compared to untransduced cells without signs of vector-mediated toxicity. Our study provides a proof of principle for the development of clinical gene therapy to cure ribosomal protein 19-deficient Diamond-Blackfan anemia.  相似文献   
4.
The effect on 5-hydroxytryptamine release from rabbit platelets to plasma of ten known sympathomimetic or anorectic phenethylamines and eight N- or O-acetyl derivatives of these substances were studied in order to find possible structure-action relationships and a possible correlation to the pulmonary hypertension inducing ability of some anorexigens. Among the mainly indirectly acting sympathomimetics amphetamine and ephedrine showed a similar high 5HT-releasing effect. Tyramine was slightly weaker, while the direct acting phenylephrine (metaoxedrine) and orciprenaline were much weaker. Acetylation increased the 5HT releasing effect of amphetamine, ephedrine and tyramine but decreased this effect of phenylephrine and orciprenaline. Among the anorectic phenethylamines the 5HT-releasing effect decreased in the following order, aminorex, amphetamine, clophorex, chlorphentermine, diethylpropion (amphepramon), phentermine. With regard to aminorex, which is a releaser of platelet 5HT and an inhibitor of both MAO activity and 5HT uptake in pulmonary tissue, it seems possible that the pulmonary hypertension can be caused by high concentration of free 5HT.  相似文献   
5.
6.
Diamond–Blackfan anaemia (DBA) is a rare congenital disease causing severe anaemia and progressive bone marrow failure. The majority of patients carry mutations in ribosomal proteins, which leads to depletion of erythroid progenitors in the bone marrow. As many as 40% of all DBA patients receive glucocorticoids to alleviate their anaemia. However, despite their use in DBA treatment for more than half a century, the therapeutic mechanisms of glucocorticoids remain largely unknown. Therefore we sought to study disease specific effects of glucocorticoid treatment using a ribosomal protein s19 (Rps19) deficient mouse model of DBA. This study determines for the first time that a mouse model of DBA can respond to glucocorticoid treatment, similar to DBA patients. Our results demonstrate that glucocorticoid treatment reduces apoptosis, rescues erythroid progenitor depletion and premature differentiation of erythroid cells. Furthermore, glucocorticoids prevent Trp53 activation in Rps19‐deficient cells‐ in a disease‐specific manner. Dissecting the therapeutic mechanisms behind glucocorticoid treatment of DBA provides indispensible insight into DBA pathogenesis. Identifying mechanisms important for DBA treatment also enables development of more disease‐specific treatments of DBA.  相似文献   
7.
Abstract The bull retractor penis muscle was used to compare the α–adrenergic effect of adrenaline, noradrenaline, methoxamine, phenylephrine, metaraminol, tyramine, amphetamine, ephedrine and orciprenaline with that of some of their O– and N–acetyl derivatives. The effect of cocaine on the responses to the drugs was also examined. Methoxamine exhibited the strongest stimulant potency on this smooth muscle. The ED50 of the other parent compounds decreased in the following order: adrenaline, noradrenaline, phenylephrine, ephedrine, metaraminol, amphetamine, tyramine. N–acetylation decreased very clearly or even abolished the effect of the drugs. O–acetylation also decreased the effect but not as much as N–acetylation. The effects of the O–acetyl derivatives were probably at least partly due to the corresponding parent compounds released after deacetylation. The very weak effects of the N–acetyl derivatives suggest that little if any N–deacetylation occurred during the experiments.  相似文献   
8.
9.
10.

Aims/hypothesis

Diabetic nephropathy is a major diabetic complication, and diabetes is the leading cause of end-stage renal disease (ESRD). Family studies suggest a hereditary component for diabetic nephropathy. However, only a few genes have been associated with diabetic nephropathy or ESRD in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD.

Methods

We exploited a novel algorithm, ‘Bag of Naive Bayes’, whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate association tests. The analysis was performed on a genome-wide association study of 3,464 patients with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study and subsequently replicated with 4,263 type 1 diabetes patients from the Steno Diabetes Centre, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK collection (UK–Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US).

Results

Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the FinnDiane study. An association between ESRD and rs17709344, tagging the previously identified rs12437854 and located between the RGMA and MCTP2 genes, was replicated in independent case–control cohorts. rs12917114 near SEMA6D was associated with ESRD in the replication cohorts under the genotypic model (p?<?0.05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno.

Conclusions/interpretation

This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods to detect novel genetic variants in diabetic nephropathy and, in general, in complex diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号