首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
药学   1篇
  1998年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
A simple carbohydrate polymer glycol chitosan (degree of polymerization 800 approx.) has been investigated for its ability to form polymeric vesicle drug carriers. The attachment of hydrophobic groups to glycol chitosan should yield an amphiphilic polymer capable of self-assembly into vesicles. Chitosan is used because the membrane-penetration enhancement of chitosan polymers offers the possibility of fabricating a drug delivery system suitable for the oral and intranasal administration of gut-labile molecules. Glycol chitosan modified by attachment of a strategic number of fatty acid pendant groups (11–16mol%) assembles into unilamellar polymeric vesicles in the presence of cholesterol. These polymeric vesicles are found to be biocompatible and haemocompatible and capable of entrapping water-soluble drugs. By use of an ammonium sulphate gradient bleomycin (MW 1400), for example, can be efficiently loaded on to these polymeric vesicles to yield a bleomycin-to-polymer ratio of 0.5 units mg?1. Previously polymers were thought to assemble into vesicles only if the polymer backbone was separated from the membrane-forming amphiphile by a hydrophilic side-arm spacer. The hydrophilic spacer was thought to be necessary to decouple the random motion of the polymer backbone from the ordered amphiphiles that make up the vesicle membrane. However, stable polymeric vesicles for use in drug delivery have been prepared from a modified carbohydrate polymer, palmitoyl glycol chitosan, without this specific architecture. These polymeric vesicles efficiently entrap water-soluble drugs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号