首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   55篇
  国内免费   19篇
耳鼻咽喉   1篇
儿科学   30篇
妇产科学   5篇
基础医学   60篇
口腔科学   28篇
临床医学   90篇
内科学   118篇
皮肤病学   6篇
神经病学   10篇
特种医学   108篇
外科学   22篇
综合类   10篇
预防医学   37篇
眼科学   2篇
药学   175篇
中国医学   2篇
肿瘤学   50篇
  2022年   2篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   8篇
  2013年   23篇
  2012年   6篇
  2011年   10篇
  2010年   28篇
  2009年   28篇
  2008年   13篇
  2007年   26篇
  2006年   22篇
  2005年   28篇
  2004年   30篇
  2003年   16篇
  2002年   23篇
  2001年   17篇
  2000年   15篇
  1999年   16篇
  1998年   32篇
  1997年   33篇
  1996年   29篇
  1995年   26篇
  1994年   26篇
  1993年   21篇
  1992年   6篇
  1991年   15篇
  1990年   10篇
  1989年   21篇
  1988年   25篇
  1987年   16篇
  1986年   22篇
  1985年   19篇
  1984年   13篇
  1983年   8篇
  1982年   16篇
  1981年   11篇
  1980年   8篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   8篇
  1974年   4篇
  1971年   2篇
  1970年   3篇
  1968年   2篇
排序方式: 共有754条查询结果,搜索用时 31 毫秒
1.
Pharmakogenetik     
Die Pharmakogenetik untersucht, inwieweit genetische Polymorphismen der Proteine, die die pharmakokinetischen und pharmakodynamischen Prozesse eines Arzneimittels kontrollieren, für die interindividuellen Unterschiede in Wirkung und Nebenwirkung verantwortlich sind. Im Gegensatz zur Pharmakogenetik nutzt die Pharmakogenomik einen genomweiten Ansatz zur Identifizierung von Genen bzw. Gennetzwerken, die an der Entstehung von Erkrankungen beteiligt sind bzw. als therapeutische Ziele für neue Arzneistoffe dienen können. Die zurzeit am besten charakterisierten pharmakogenetischen Polymorphismen betreffen die Arzneimittel metabolisierenden Enzyme Zytochrom-P450-2C9, -2C19 und -2D6 bzw. die Thiopurinmethyltransferase, für die in klinischen Studien relevante Konsequenzen für die Arzneimitteltherapie gezeigt werden konnten. Das ultimative Ziel pharmakogenetischer/-genomischer Forschung ist es, unter Verwendung einer neuen Krankheits- und Therapieklassifikation auf molekularer Ebene eine spezifische Arzneimitteltherapie bei genetisch definierten Untergruppen von Patienten durchzuführen.  相似文献   
2.
Pachycarpine (4), the optical antipode of the lupine alkaloid (-)-sparteine (1), has been prepared from (-)-lupanine; its metabolism was studied in rats. After isolation and chromatographic purification, streochemically homogeneous (+)-(4S)-hydroxysparteine (7) was identified as the major urinary metabolite by use of mass spectrometry and high-field NMR-spectroscopy.  相似文献   
3.
The aim of this study was to characterize the role of the efflux transporter Mrp2 (Abcc2) in the pharmacokinetics of orally and intravenously administered pravastatin in rats. Eight Mrp2-deficient TR- rats and eight wild-type rats were given an oral dose of 20 mg/kg pravastatin. Four TR- animals and four wild-type animals were studied after intravenous administration of pravastatin (5 mg/kg). The TR(-) rats showed a 6.1-fold higher mean area under the plasma concentration-time curve (AUC) of pravastatin (p < 0.001) after oral administration and a 4.7-fold higher AUC (p < 0.01) after intravenous administration of pravastatin as compared with the wild-type animals. The mean systemic (total) clearance of pravastatin was 4.6-fold higher (39.2 versus 8.50 l/h/kg, p < 0.001) and the mean V 4.3-fold higher (14.1 versus 3.29 l/kg, p < 0.01) in the wild-type rats. The mean renal clearance of pravastatin in the TR(-) rats was 16.5-fold increased as compared with the wild-type animals (0.695 versus 0.042 l/h/kg, p < 0.05). The increased systemic exposure to oral pravastatin in the TR- rats was associated with a greater inhibitory effect on 3-hydroxy-3-methylglutaryl CoA reductase, as shown by smaller lathosterol to cholesterol concentration ratios. These results suggest that the reduced biliary pravastatin excretion in the Mrp2-deficient TR- rats is partly compensated for by increased urinary excretion of pravastatin. Furthermore, intestinal Mrp2 does not appear to play a major role in the oral absorption of pravastatin in normal rats.  相似文献   
4.
The calcium channel blocker verapamil [2,8-bis-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] undergoes extensive biotransformation in man. We have previously demonstrated cytochrome P450 (CYP) 3A4 and 1A2 to be the enzymes responsible for verapamil N-dealkylation (formation of D-617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile]), and verapamil N-demethylation (formation of norverapamil [2,8-bis(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoctanitrile]), while there was no involvement of CYP3A4 and CYP1A2 in the third initial metabolic step of verapamil, which is verapamil O-demethylation. This pathway yields formation of D-703 [2-(4-hydroxy-3-methoxyphenyl)-8-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] and D-702 [2-(3,4-dimethoxyphenyl)-8-(4-hydroxy-3-methoxyphenyl)6-methyl-2-isopropyl-6-azaoctanitrile]. The enzymes catalyzing verapamil O-demethylation have not been characterized so far. We have therefore identified and characterized the enzymes involved in verapamil O-demethylation in humans by using the following in vitro approaches: (I) characterization of O-demethylation kinetics in the presence of the microsomal fraction of human liver, (II) inhibition of verapamil O-demethylation by specific antibodies and selective inhibitors and (111) investigation of metabolite formation in microsomes obtained from yeast strain Saccharomyces cerevisiae W(R), that was genetically engineered for stable expression of human CYP2C8, 2C9 and 2C18.In human liver microsomes (n=4), the intrinsic clearance (CLint), as derived from the ratio of V max/Km, was significantly higher for O-demethylation to D-703 compared to formation of D-702 following incubation with racemic verapamil (13.9±1.0 vs 2.4±0.6 ml*min-1 *g-1 mean±SD; p<0.05), S-Verapamil (16.8±3.3 vs 2.2±1.2 ml* mini*g-1, p<0.05) and R-verapamil (12.1±2.9 vs 3.6 ±1.3 ml*min-1 * g-1; p<0.05), thus indicating regioselectivity of verapamil O-demethylation process. The CLint of D-703 formation in human liver microsomes showed a modest but significant degree of stereo selectivity (p<0.05) with a S/R-ratio of 1.41±0.17. Anti-LKM2 (anti-liver/kidney microsome) autoantibodies (which inhibit CYP2C9 and 2C19) and sulfaphenazole (a specific CYP2C9 inhibitor) reduced the maximum rate of formation of D-703 by 81.5±4.5% and 45%, that of D-702 by 52.7±7.5% and 72.5%, respectively. Both D-703 and D-702 were formed by stably expressed CYP2C9 and CYP2C18, whereas incubation with CYP2C8 selectively yielded D-703.In conclusion, our results show that enzymes of the CYP2C subfamily are mainly involved in verapamil O-demethylation. Verapamil therefore has the potential to interact with other drugs which inhibit or induce these enzymes.  相似文献   
5.
6.
1. The disposition of the enantiomers of the antiarrhythmic drug flecainide has been studied in five extensive (EM) and five poor (PM) metabolisers of sparteine/debrisoquine after administration of 50 mg of racemic flecainide acetate under conditions of high urinary flow rate and acidic urinary pH. 2. In the EM subjects there were no significant differences in the oral clearance, half-life or urinary excretion of (+)-S- and (-)-R-flecainide. 3. In the PM subjects differences in the pharmacokinetics of S- and R-flecainide were observed. The oral clearance of R-flecainide (467 +/- 109 ml min-1) was less (P less than 0.03) than that of the S-enantiomer (620 +/- 172 ml min-1). The half-life of R-flecainide (12.9 h) was longer (P less than 0.03) than that of S-flecainide (9.8 h). The renal clearance of the two enantiomers was, however, comparable and similar to that observed in the EM subjects. The urinary recovery of R-flecainide (15.6 +/- 3.7 mg) was greater (P less than 0.03) than that of the S-enantiomer (12.0 +/- 3.7 mg). The enantioselective disposition observed in PMs is therefore due to greater impairment in the metabolism of R- than S-flecainide. 4. The urinary recoveries of two major metabolites of flecainide, meta-O-dealkylated flecainide (MODF) and the meta-O-dealkylated lactam of flecainide (MODLF) were lower (P less than 0.05) in PMs, 12.0% +/- 3.1% and 8.2% +/- 3.2% of the dose administered, respectively, than in EMs of 17.7% +/- 3.3% and 16.5% +/- 3.3%, respectively. 5. One PM subject had a greatly diminished flecainide metabolic capacity and a rare genotype, as assigned by Xbal RFLP analysis.  相似文献   
7.
 In the pathogenesis of isoniazid-induced hepatic injury, cytochrome P450-dependent metabolic activation of the metabolite, acetylhydrazine (AcHz), is the crucial step. Exhalation of [14C]-carbon dioxide has previously been used to quantify indirectly this pathway. In contrast, according to the current concept of AcHz bioactivation, molecular nitrogen is produced directly, but has not yet been identified. Here, we measured [15N]-nitrogen and 14CO2 exhalation, after the administration of [15N2]-[14C]-AcHz, in rats. Laser magnetic resonance (LMR) spectroscopy, a new sensitive and specific technique for the measurement of 15N and 14N in gas samples, was used. To demonstrate the involvement of cytochrome P450, rats were treated with phenobarbital (PB) or PB + cobalt(II) chloride (CoCl2) (n=3 in each group). Time-dependent 15N2 exhalation differed significantly between treatment groups (p<0.001). At 240 min, cumulative exhalation of 15N was 1.92±0.43% (mean±SE) of the dose in the control group, 2.53±0.23% in the PB group, and 1.00±0.15% in the PB+CoCl2 group (p<0.05 compared to controls, p<0.01 compared to PB). Cumulative exhalation of 14CO2 in 24 h ranged from 15.1 to 21.9%, with no significant difference between treatment groups. In conclusion, N2 is a metabolite of AcHz. N2 formation reflects the cytochrome P450-mediated activation of AcHz and can be used as an index of this pathway. Generally, LMR spectroscopy is valuable for monitoring any N2-liberating process in vivo. Received: 14 March 1995/Accepted: 15 August 1995  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号