首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
基础医学   7篇
神经病学   4篇
预防医学   1篇
药学   5篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1990年   2篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
The excitotoxicity induced by QA has been related to its ability to increase free radical content and oxidative stress. In order to investigate the time course of toxicity and oxidative profile in the mice hippocampus following seizures induced by QA infusion (36.8 nM, i.c.v.), we evaluated the cellular damage (PI uptake assay), content of ROS formation (DCF assay) and the total radical antioxidant potential (TRAP) and reactivity (TAR) levels. The present results showed that a cellular damage occurred as early as 4 h after QA infusion coincident with an increase in the ROS contents, which returned to control levels after 24 h, while the cellular damage persisted for 72 h. There was a marked increased in the total antioxidant capacity at 8 h after QA infusion in both reactivity and potential levels. By 72 h post-treatment, the TRAP levels decreased, but the TAR levels remained augmented. Therefore, the delayed and persistent increase in the antioxidant capacity after QA insult may be a cellular adaptative response, probably contributing to decrease the ROS levels in order to prevent the spreading of the cellular damage. Therefore, the increase in the QA level in the brain ventricle may induce oxidative stress, which is followed by a persistent response in the antioxidant system in the hippocampus. The present study may, therefore, contribute to elucidate the mechanism of the brain dysfunction in patients with several neurological disorders involving elevation of QA in the CSF.  相似文献   
2.
Morphine exposure during the neonatal period can promote changes in pain signaling pathways that can be expressed as an increased nociceptive response in adult life. Glutamate is the major excitatory neurotransmitter in primary afferent terminals and plays a critical role in normal spinal excitatory synaptic transmission. Considering the importance of a better understanding of the mechanisms that underlie nociceptive changes throughout the life course, the aim of this study was investigate the effects of repeated morphine administration at postnatal days 8 (P8) to 14 (P14) on glutamate uptake in spinal synaptosomes at P30 and P60. The morphine group showed decreased [3H]-glutamate uptake as compared to control groups in both P30 and P60. These findings suggest that morphine exposure in early life leads to changes in glutamatergic signaling at least until the 60th day of age, which may lead to increased levels of glutamate in the spinal synaptic cleft and, consequently, an increased nociceptive response in adult life. Thus, this study highlights the importance of conducting research in this field to provide a comprehensive knowledge of the long-term effects of early-life morphine treatment on nociceptive pathways.  相似文献   
3.
The excitatory amino acids (EAAs) transporters regulate the balance between physiological and pathological signaling over stimulation of the glutamatergic system pathway. The effect of transportable substrates and glutamate (Glu) receptor agonists on Glu uptake in neuronal cells was assessed at different conditions. Cells pre-incubated with Glu, L- or D-aspartate (Asp) and washed presented an inhibition on [(3)H]-Glu uptake and this effect was not mimicked by Glu receptors agonists. The effects of L- and D-Asp were not altered by the presence of N-methyl-d-aspartate (NMDA) receptor antagonists. Thus, the reduction on Glu uptake induced by EAAs is probably linked to the transporter activity. In contrast, the presence of NMDA or (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (SR-ACPD) during the pre-incubation and the [(3)H]-Glu uptake assay period increased Glu uptake, whilst kainic acid (KA) had no effect. The NMDA effect was not altered by its antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP-5) or dizocilpine (MK-801). The SR-ACPD effect was due to the activation of metabotropic Glu receptor, since it was abolished by its antagonist, L(+/-)-2-amino-3-phosphonopropionic acid (L-AP3). Thus, the current studies suggest that the neuronal EAAs transporter is regulated in different manner by transportable substrates and Glu receptor agonists. The possible involvement of this modulation after certain neurotoxicity insults is discussed.  相似文献   
4.
N-Methyl-D-aspartate (NMDA) preconditioning is evoked by subtoxic concentrations of NMDA (50 microM), which has been shown previously to lead to transient resistance to subsequent lethal dose of glutamate or NMDA in cultured neurons. The purpose of this study was to investigate the participation of adenosine A1 and A2A receptors on NMDA preconditioning against glutamate-induced cellular damage in cerebellar granule cells. NMDA preconditioning prevented the stimulatory effect induced by glutamate on AMP hydrolysis, but not on ADP hydrolysis. The neuroprotection evoked by NMDA preconditioning against glutamate-induced cellular damage was prevented by the presence of adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT, 100 nM), but not by the adenosine A2A receptors antagonist, (4-(2[7-amino-2-(2-furyl {1,2,4}-triazolo{2,3-a{1,3,5}triazian-5-yl-aminoethyl)phenol (ZM 241385, 50 nM). Interestingly, a long-term treatment with CPT or ZM 241385 alone protected cells against glutamate-induced neurotoxicity. Moreover, the functionality of adenosine A1 receptor was not affected by NMDA preconditioning, but this treatment promoted adenosine A2A receptor desensitization, measured by cAMP accumulation. Taken together, the results described herein suggest that the neuroprotection evoked by NMDA preconditioning against cellular damage elicited by glutamate occurs through mechanisms involving adenosine A2A receptors desensitization co-operating with adenosine A1 receptors activation in cerebellar granule cells.  相似文献   
5.
The effects of undernutrition during suckling on neurochemical and behavioral parameters were investigated in adult rats. Young rats were undernourished by feeding their mothers an 8% (by wt) protein diet from delivery until weaning (d 21). Mothers of control rats were fed a 20% protein diet. After weaning, normal and undernourished rats were fed a 20% protein diet until 90-120 d of age, when the rats were subjected to footshocks of low and high intensity during escape training sessions. The memory of footshock escape learning was measured 24 h later by testing with low and high footshock intensity. Also, two neurochemical changes related to the escape training with high footshock intensity were studied: hypothalamic beta-endorphin release during the training and the increase of amino acid incorporation into protein in brain structures 4 h after training. By means of low shock intensity we observed that undernutrition during suckling causes hyperreactivity to electric shock. By means of high shock intensity we observed that undernutrition abolished the neurochemical changes caused by learning training and abolished the memory of footshock escape learning.  相似文献   
6.
The endogenous opiate peptide, beta-endorphin (0.4, 1.0, 2.0, and 10.0 g/kg) was injected IP into rats immediately after training in a shuttle avoidance task, and its effect on memory retention was evaluated in test sessions carried out 24 h later. The drug was found to cause retrograde amnesia, the ED50 being 1.0 g/kg. Beta-endorphin immunoreactivity was measured in the hypothalamus and rest of the brain of rats submitted to training, or test sessions of shuttle avoidance learning, pseudoconditioning in the shuttle-box, tones alone, or foot-shocks alone. After training in any of the four paradigms, there was a marked (46–60%) depletion of beta-endorphin immunoreactivity in the rest of the brain. No changes were detected in the hypothalamus or after test sessions. The loss of beta-endorphin immunoreactivity may be attributed to release of this substance caused by the stimuli used for training. From the present findings, as well as previous observations on the memory-facilitating influence of the opiate receptor antagonist, naloxone, it is concluded that there is a physiological amnesic mechanism mediated by beta-endorphin (and perhaps other opoid peptides as well), which is triggered by the non-associative factors present in the various forms of learning.Supported by funds from FAPERGS, PROPESP-UFRGS, and CNPq, Brasil  相似文献   
7.
In previous work we showed that phosphorylation of glial fibrillary acidic protein (GFAP), an astrocyte marker, is increased by glutamate in hippocampal slices from immature rats via a type II metabotropic receptor. In the present work we show that glutamate also stimulates GFAP phosphorylation in microslices prepared from immature cerebellar cortex, but by a different receptor mechanism from that observed in the hippocampus. Thus, in cerebellar microslices, NMDA consistently stimulated GFAP phosphorylation, whereas no effect of metabotropic or non-NMDA ionotropic agonists was observed. Glutamate and NMDA also stimulated GFAP phosphorylation in mixed neuronal/glial cell cultures from the cerebellum, although no effect of these agonists was observed in primary cultures of cerebellar astrocytes. In both models, the effects of glutamate and NMDA were dependent on external Ca(2+), were reversed by the NMDA receptor antagonist AP5 and were not blocked by tetrodotoxin. In the slice study the effect of NMDA was confined to a period starting with the first detectable expression of GFAP at 10 days and finishing at 16 days postnatal, as previously observed with metabotropic agonists in hippocampal slices. This period in the rat corresponds to the start of synaptogenesis when astrocyte hypertrophy is occurring. The results are discussed in the light of information in the literature on the occurrence of functional NMDA receptor subunits in glia.  相似文献   
8.
Accumulation of cyclic adenosine monophosphate (cAMP) elicited by adenosine was studied in slices and membrane preparations of optic tectum from chicks aged 1–13days post-hatch. Accumulation of cAMP promoted by adenosine declined with age, chicks and the lowest in 11-day-old chicks. However, when the slices were incubated with adenosine and the phosphodiesterase inhibitor-Ro 20-1724 the differences between teh two ages were abolished, suggesting a higher phosphodiesterase activity in 11-day-old chicks. In membrane preparations, although basal adenylate cyclase activity was lower in three-day-old chicks, the guanylyl-imidodiphosphate (Gpp(NH)p) concentration curves for stimulation of adenylate cyclase activity indicated a higher sensitivity of G protein to Gpp(NH)p at this age. This hypothesis was reinforced by the observation that the binding of [3H]Gpp(NH)p to the membrane preparation was greater in three-day-old animals. In spite of these differences, the percentage of adenylate cyclase activity stimulation by 2-chloroadenosine (2CADO) + Gpp(NH)p was the same at both ages. These findings suggest that the decreased response evoked by adenosine during development is probably due to increased phosphodiesterase activity and a lower sensitivity of adenylate cyclase activity to Gpp(NH)p.  相似文献   
9.
Caffeine is widely consumed in beverages and food, and its consumption in high doses is associated with anxiety increase. Stress situations are often associated to coffee consumption, and have a strong influence on oxidative DNA damage. As there are sex-specific differences in many metabolic, neurochemical and behavioral aspects, the aim of this study is to verify the interaction between chronic consumption of caffeine and chronic stress on anxiety and DNA breaks in the hippocampus on male and female rats. Wistar rats were submitted to restraint stress for at least 50 days. The diet consisted of standard rat chow and caffeine 0.3 or 1 g/L in drinking water “ad libitum” as the only drinking source. Controls received tap water. Anxiety-like behavior and DNA breaks in the hippocampus were evaluated. Caffeine consumption and chronic stress increased anxiety-like behavior as well as DNA breaks in the hippocampus of male rats. No effect on these parameters was observed in females. These results may be related to the presence of estradiol, which may have anxiolytic and neuroprotective properties.  相似文献   
10.
The present report examined the effects of undernutrition and handling on shuttle and footshock escape avoidance behavior of female rats. Rats were undernourished by feeding their dams a 7% casein diet from birth until 23 days of life. During this period rats were separated from their dams for 4 to 10 min. On days 23 and 24 after delivery, young rats were subjected to sessions in a two-way shuttle avoidance task. The results demonstrated that nonstimulated and stimulated undernourished and stimulated well-nourished rats escape faster than nonstimulated well-nourished animals from footshock during the first session of shuttle avoidance. Further, undernutrition interacted with early stimulation, disrupting the shuttle avoidance behavior of female rats. These results suggest that both undernutrition and early handling can change the footshock behavior of young rats. Undernourished rats presented lower basal glucose levels than well-nourished animals, but responded to shuttle avoidance testing in the same way as do normal rats, increasing the glucose levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号