首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
药学   26篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   7篇
  2011年   1篇
  2010年   1篇
  2008年   8篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Archives of Pharmacal Research - Insufficient efficacy of current single drug therapy of cancers have led to the advancement of combination drug-loaded formulations. Specifically, polymeric...  相似文献   
2.
The aim of this study was to make use of small size of immediate-release (IR) pellet and amorphous state of solid dispersion to increase solubility of celecoxib (CLX), a drug in BCS class II. Primary, binary and ternary solid dispersions were developed to choose the final components for solid dispersion. A ternary novel solid dispersion was prepared by incorporation of one aqueous soluble polymer (povidone k17; PVP 17PF), Methacrylate copolymer-based gastric soluble polymer (Eudragit? EPO) and one pH modulator (MgO). This combination was effective to increase solubility in pH 1.2 up to 25?C30?%. The mechanism of solubility enhancement was proven by DSC, PRXD, and FT-IR. Accordingly, hydrogen bonding or electrostatic interaction of CLX with PVP/Eudragit? EPO was the main cause to form the amorphous state of CLX within polymer cluster which increasing solubility of drug. Besides, MgO played an important role to change microenviroment for solid dispersion. Pellets containing this solid dispersion were prepared by extrusion and spheronization technique. Effect of four kinds of additive (calcium hydrogen phosphate dihydrate, NaHCO3, crospovidone, and sodium dodecyl sulfate) on dissolution of CLX from IR pellet was also determined. Because of highest dissolution rate, formulation using sodium dodecyl sulfate was used for pharmacokinetics study. Solid dispersion-IR pellet formulation presented bioequivalence and lower variability in comparison with reference product.  相似文献   
3.
PLGA scaffolds were prepared using a nano-composite deposition system (NCDS). 5-Fluorouracil (5-FU) was used as a model drug. Hydroxyapatite (HA) was included in the scaffolds to improve the mechanical properties of the scaffolds and modulate the release of 5-FU from the scaffolds. 5-FU and HA were dispersed well in the prepared scaffolds when evaluated with SEM, FT-IR, XRPD and DSC. The release of 5-FU from the prepared scaffolds consisting of different compositions was determined using 40 mL PBS as the medium. The release profiles of 5-FU from PLGA scaffolds followed the typical triphasic release pattern. The addition of HA to the compositions increased the release rate of 5-FU from the scaffolds and improved the mechanical properties of the scaffolds, while it retarded the degradation of PLGA. Therefore, NCDS could be a good system to prepare polymeric implants of various shapes with different drug release patterns.  相似文献   
4.
The aims of this study were to develop a transdermal gel formulation for ibuprofen using experimental design techniques and to evaluate its pharmacokinetic properties. The three factors chosen for factorial design were the concentrations of drug, polyoxyethylene(5)cetyl/oleyl ether and ethanol and the levels of each factor were low, medium and high. Skin permeation rates and lag times of ibuprofen were evaluated using the Franz-type diffusion cell in order to optimize the gel formulation. The permeation rate of ibuprofen significantly increased in proportion to the drug concentration, but significantly decreased in proportion to POE(5)cetyl/oleyl ether concentration. Ethanol concentration was inversely proportional to the lag time. The pharmacokinetic properties of the optimized formulation were compared with those of two marketed products in rats. The relative bioavailability of ibuprofen gel compared to the two marketed products was 228.8% and 181.0%. In conclusion, a transdermal ibuprofen gel was formulated successfully using the technique of experimental design and these results helped in finding the optimum formulation for transdermal drug release.  相似文献   
5.
The aim of this study was to develop an aqueous parenteral formulation containing itraconazole (ITZ) using an o/w microemulsion system. A mixture of benzyl alcohol and medium chain triglyceride (3/1) was chosen as the oil phase. Pseudoternary phase diagrams of the microemulsion formations were constructed in order to determine the optimum ratio of oils, the concentration range of surfactant and cosurfactant and the optimum ratio between them. Consequently, the suitability of the chosen microemulsion system as a parenteral formulation was evaluated using droplet size analysis and hemolysis tests. Among the surfactants and cosurfactants screened, a mixture of polyoxyethylene (50) hydrogenated castor oil and ethanol (3/1) showed the largest o/w microemulsion region in the phase diagram. The average droplet size of the microemulsions was < 150 nm, and the hemolysis test showed this formulation to be nontoxic to red blood cells. The pharmacokinetic profiles of the ITZ-microemulsion for itraconazole and its major metabolite, hydroxyitraconazole, were compared with those of a PEG 400 solution and cyclodextrin formulations in rats. Overall, these results highlight the potential of an ITZ-microemulsion formulation for the parenteral route.  相似文献   
6.
Acamprosate calcium is a highly soluble drug with low permeability that is used to maintain abstinence in alcohol-dependent patients. The aim of this study was to investigate the relationship between in vitro and in vivo behaviors of acamprosate from enteric-coated tablets. The in vitro release behavior of acamprosate tablets in pH 6.8 buffer solution was determined in three dissolution conditions, 50 and 150 rpm (paddle method) and 180 rpm (basket method). The results of this in vitro experiment indicated that acamprosate tablets hardly disintegrated, and drug dissolution was retarded despite the extremely hydrophilic nature of the drug. A single dose (333 mgx2 tablets) of each formulation was orally administered to four beagle dogs under fasting conditions, and the pharmacokinetic parameters were calculated. The mean AUC0-48, Cmax, Tlag and Tmax for the two types of tablets ranged from 41.5-53.6 microg.h/mL, 4.3-4.5 microg/mL, 2.0-2.5 h and 3.8-4.0 h, respectively. In conclusion, it is suggested that retarded drug release from the tablets and the low drug permeability may result in poor absorption and erratic bioavailability of this drug in humans.  相似文献   
7.
The aims of this study were to examine the phase behavior of itraconazole-phenol mixtures and assess the feasibility of topical formulations of itraconazole using eutectic mixture systems. Itraconazole-phenol eutectic mixtures were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, (1)H-nuclear magnetic resonance, and powder X-ray diffractometry. The skin permeation rates of itraconazole-phenol eutectic formulations were determined using Franz diffusion cells fitted with excised hairless mouse skins. Itraconazole can form eutectic compounds with phenol, and the hydrogen-bonding interactions between the carbonyl group in the itraconazole and hydroxyl group in phenol play a major role in itraconazole-phenol eutectic formation. Despite its high molecular weight and hydrophobicity, the drug (i.e., itraconazole) can be permeated through excised hairless mouse skins from itraconazole-phenol eutectic formulations. The findings of this study emphasize the capabilities of the topical application of itraconazole via external preparations.  相似文献   
8.
Tacrolimus (TCR; also FK-506 and trade name prograf?), an antibiotic of macrolide family and a novel immunosuppressive agent, is a natural product of actinomycete Streptomyces tskubaensis. But TCR is poorly soluble in water (0.012?mg/mL), so its bioavailability is low and irregular. The aim of this study is to characterize physicochemical properties of TCR and investigate the improvement of solubility and dissolution rate of TCR solid dispersion (SD) with poloxamer. TCR SDs, consisting of various grades and ratios of poloxamer were prepared by hot-melting method and were characterized by DSC, PXRD, and FT-IR. The dissolution profile and solubility of TCR from the SDs were evaluated. SD of TCR prepared with poloxamer 188 at the ratio of 1:1 by the hot-melting method resulted in a significant increase in TCR solubility and enhanced dissolution profile over the TCR crystalline powder.  相似文献   
9.
The purposes of this study were to prepare a topical solution containing itraconazole (ITR)-phenol eutectic mixture and to evaluate its ex vivo skin permeation, in vivo deposition and in vivo irritation. The eutectic mixture was prepared by agitating ITR and phenol (at a weight ratio of 1:1) together at room temperature. The effects of additives on the skin permeation of ITR were evaluated using excised hairless mouse skin. The in vivo skin deposition and skin irritation studies were performed in Sprague-Dawley rat and New Zealand white rabbit model. The permeability coefficient of ITR increased with addition of oleic acid in the topical solution. Otherwise, the permeability coefficient was inversely proportional to the concentration of the thickening agent, HPMC. The optimized topical solution contained 9 wt% of the ITR-phenol eutectic mixture, 9.0 wt% of oleic acid, 5.4 wt% of hydroxypropylmethyl cellulose and 76.6 wt% of benzyl alcohol. The steady-state flux and permeability coefficient of the optimized topical solution were 0.90 ± 0.20 ??g/cm2·h and 22.73 ± 5.73 × 106 cm/h, respectively. The accumulated of ITR in the epidermis and dermis at 12 h was 49.83 ± 9.02 ??g/cm2. The topical solution did not cause irritation to the skins of New Zealand white rabbits. Therefore, the findings of this study indicate the possibilities for the topical application of ITR via an external preparation.  相似文献   
10.
The technical advances in microscopy imaging techniques have been applied to assess the fate of drugs for researching respiratory drug delivery in ex vivo and in vivo experiments. Recent developments in optical imaging (confocal microscopy, multi-photon microscopy, fluorescence imaging (FLI) and bioluminescence imaging (BLI)), and in non-optical imaging (magnetic resonance imaging (MRI), computing tomography (CT), positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT)) are presented with their derivative medical devices. Novel microscopy have been utilized to address many biological questions in basic research and are becoming powerful clinical tools for non-invasive objective diagnosis, guided treatment, and monitoring therapies. The goal of this paper is to present recent advances in microscopy imaging techniques and to discuss their novel applications in respiratory drug delivery imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号