首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础医学   1篇
内科学   1篇
神经病学   1篇
药学   3篇
  2020年   2篇
  2019年   1篇
  2015年   2篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

A growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation. Probiotics represent oral nontoxic immunomodulatory agents that would exert benefits when using in combination with current MS therapy. Here we investigate the effect of Vivomixx on the gut microbiome and central and peripheral immune responses in a murine model of primary progressive MS. Vivomixx administration was associated with increased abundance of many taxa such as Bacteroidetes, Actinobacteria, Tenericutes and TM7. This was accompanied by a clear improvement of the motor disability of Theiler’s virus infected mice; in the CNS Vivomixx reduced microgliosis, astrogliosis and leukocyte infiltration. Notably, the presence of Breg cells (CD19+CD5+CD1dhigh) in the CNS was enhanced by Vivomixx, and while spinal cord gene expression of IL-1β and IL-6 was diminished, the probiotic promoted IL-10 gene expression. One of the most significant findings was the increased plasma levels of butyrate and acetate levels in TMEV-mice that received Vivomixx. Peripheral immunological changes were subtle but interestingly, the probiotic restricted IL-17 production by Th17-polarized CD4+ T-cells purified from the mesenteric lymph nodes of Theiler’s virus infected mice. Our data reinforce the beneficial effects of oral probiotics that would be coadjuvant treatments to current MS therapies.  相似文献   
2.
T helper type 17 lymphocytes (Th17 cells) infiltrate the central nervous system (CNS), induce inflammation and demyelination and play a pivotal role in the pathogenesis of multiple sclerosis. Sialomucin CD43 is highly expressed in Th17 cells and mediates adhesion to endothelial selectin (E-selectin), an initiating step in Th17 cell recruitment to sites of inflammation. CD43−/− mice have impaired Th17 cell recruitment to the CNS and are protected from experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. However, E-selectin is dispensable for the development of EAE, in contrast to intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). We report that CD43−/− mice have decreased demyelination and T-cell infiltration, but similar up-regulation of ICAM-1 and VCAM-1 in the spinal cord, compared with wild-type (WT) mice, at the initiation of EAE. CD43−/− Th17 cells have impaired adhesion to ICAM-1 under flow conditions in vitro, despite having similar expression of LFA-1, the main T-cell ligand for ICAM-1, as WT Th17 cells. Regardless of the route of integrin activation, CD43−/− Th17 cell firm arrest on ICAM-1 was comparable to that of WT Th17 cells, but CD43−/− Th17 cells failed to optimally apically migrate on immobilized ICAM-1-coated coverslips and endothelial cells, and to transmigrate under shear flow conditions in an ICAM-1-dependent manner. Collectively, these findings unveil novel roles for CD43, facilitating adhesion of Th17 cells to ICAM-1 and modulating apical and transendothelial migration, as mechanisms potentially responsible for Th17 cell recruitment to sites of inflammation such as the CNS.  相似文献   
3.
4.

Background and Purpose

Sativex® is an oromucosal spray, containing equivalent amounts of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD)-botanical drug substance (BDS), which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS). In this study, we investigated whether Sativex may also serve as a disease-modifying agent in the Theiler''s murine encephalomyelitis virus-induced demyelinating disease model of MS.

Experimental Approach

A Sativex-like combination of phytocannabinoids and each phytocannabinoid alone were administered to mice once they had established MS-like symptoms. Motor activity and the putative targets of these cannabinoids were assessed to evaluate therapeutic efficacy. The accumulation of chondroitin sulfate proteoglycans (CSPGs) and astrogliosis were assessed in the spinal cord and the effect of Sativex on CSPGs production was evaluated in astrocyte cultures.

Key Results

Sativex improved motor activity – reduced CNS infiltrates, microglial activity, axonal damage – and restored myelin morphology. Similarly, we found weaker vascular cell adhesion molecule-1 staining and IL-1β gene expression but an up-regulation of arginase-1. The astrogliosis and accumulation of CSPGs in the spinal cord in vehicle-infected animals were decreased by Sativex, as was the synthesis and release of CSPGs by astrocytes in culture. We found that CBD-BDS alone alleviated motor deterioration to a similar extent as Sativex, acting through PPARγ receptors whereas Δ9-THC-BDS produced weaker effects, acting through CB2 and primarily CB1 receptors.

Conclusions and Implications

The data support the therapeutic potential of Sativex to slow MS progression and its relevance in CNS repair.Tables of Links
TARGETS
GPCRsa
CB1 receptors
CB2 receptors
Nuclear hormone receptorsb
PPAR-γ
Enzymesc
Arg-1, arginase 1
Open in a separate window
LIGANDS
AM251
AM630
CBD, cannabidiol
IFN-γ
IL-10
T0070907
TNF-α
Δ9-THC, Δ9-tetrahydrocannabinol-
Open in a separate windowThese Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (a,b,cAlexander et al., 2013a, b, c).  相似文献   
5.

Background and Purpose

cAMP plays an important role in the transduction of signalling pathways involved in neuroprotection and immune regulation. Control of the levels of this nucleotide by inhibition of cAMP-specific PDEs such as PDE7 may affect the pathological processes of neuroinflammatory diseases like multiple sclerosis (MS). In the present study, we evaluated the therapeutic potential of the selective PDE7 inhibitor, TC3.6, in a model of primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS.

Experimental Approach

Theiler’s murine encephalomyelitis virus-induced demyelinated disease (TMEV-IDD) is one of the models used to validate the therapeutic efficacy of new drugs in MS. As recent studies have analysed the effect of PDE7 inhibitors in the EAE model of MS, here the TMEV-IDD model was used to test their efficacy in a progressive variant of MS. Mice were subjected to two protocols of TC3.6 administration: on the pre-symptomatic phase and once the disease was established.

Key Results

Treatment with TC3.6 ameliorated the disease course and improved motor deficits of infected mice. This was associated with down-regulation of microglial activation and reduced cellular infiltrates. Decreased expression of pro-inflammatory mediators such as COX-2 and the cytokines, IL-1β, TNF-α, IFN-γ and IL-6 in the spinal cord of TMEV-infected mice was also observed after TC3.6 administration.

Conclusion

These findings support the importance of PDE7 inhibitors, and specifically TC3.6, as a novel class of agents with therapeutic potential for PPMS. Preclinical studies are needed to determine whether their effects translate into durable clinical benefits.Tables of Links
TARGETS
COX-2PDE7A
PDE3PDE7B
PDE4
Open in a separate window
LIGANDS
BRL50481GlutamateIL-2Nitric oxide (NO)
cAMPIFN-βIL-6Rp-cAMPs
cGMPIFN-γIL-12TNF-α
H-89IL-1βRolipram
Open in a separate windowThese Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (Alexander et al., 2013).  相似文献   
6.
The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-β1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-β1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号