首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
药学   1篇
  1995年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Purpose. The purpose of this study was to demonstrate that it is possible to prepare controlled-release drug-polymer coevaporates on an industrial scale, omitting the recovery problems and the milling and sieving processes encountered when coevaporates are prepared by the conventional solvent-evaporation technique. Methods. Controlled-release coevaporates were prepared by spraying organic solutions of dipyridamole-Eudragit® blends onto neutral pellets using the fluidized-bed coating method. Enteric acrylic polymers Eudragit® L100-55, L, and S were used as dispersing agents and drug/polymer ratio 2:8 was selected for all formulations. Polarized light microscopy, X-ray diffraction spectroscopy, and differential scanning calorimetry were used to determine whether the drug was amorphous or crystalline in the coating films. Moreover, in vitro dissolution tests were performed on the dipyridamole coated pellets in test media simulating the pH variations in the GI tract and the results were compared to the release data obtained from coevaporates prepared by the conventional solvent-evaporation method. Results. All the results clearly indicate that dipyridamole is amorphous in the coating films deposited on neutral pellets as well as in coevaporate particles obtained by the conventional solvent-evaporation method. When the release patterns of the dipyridamole coated pellets are compared to those of the drug coevaporate particles prepared with the same enteric acrylic polymers, the results show similar dissolution trends. Conclusions. The results obtained indicate that pelletization can be considered as a method of choice for pilot plant and/or full-scale production of controlled-release dosage forms based on the formation of amorphous solid dispersions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号