首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
药学   4篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Pharmaceutical Chemistry Journal - Various parts of Crataegus oxyacantha (hawthorn) plant have been used in traditional medicine in many countries including Algeria. In this study, antioxidant...  相似文献   
2.
Context: This is the first study on the phytochemistry, antioxidant, anticholinesterase, and antibacterial activities of Sedum caeruleum L. (Crassulaceae).

Objective: The objective of this study is to isolate the secondary metabolites and determine the antioxidant, anticholinesterase, and antibacterial activities of S. caeruleum.

Materials and methods: Six compounds (16) were isolated from the extracts of S. caeruleum and elucidated using UV, 1D-, 2D-NMR, and MS techniques. Antioxidant activity was investigated using DPPH?, CUPRAC, and ferrous-ions chelating assays. Anticholinesterase activity was determined against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the Ellman method. Antibacterial activity was performed according to disc diffusion and minimum inhibitory concentration (MIC) methods.

Results: Isolated compounds were elucidated as ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-d-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6). The butanol extract exhibited highest antioxidant activity in all tests (IC50 value: 28.35?±?1.22?µg/mL in DPPH assay, IC50 value: 40.83?±?2.24?µg/L in metal chelating activity, and IC50 value: 23.52?±?0.44?µg/L in CUPRAC), and the highest BChE inhibitory activity (IC50 value: 36.89?±?0.15?µg/L). Moreover, the chloroform extract mildly inhibited (MIC value: 80?µg/mL) the growth of all the tested bacterial strains.

Discussion and conclusion: Ursolic acid (1), daucosterol (2), β-sitosterol-3-O-β-d-galactopyranoside (3), apigenin (4), apigetrin (5), and apiin (6) were isolated from Sedum caeruleum for the first time. In addition, a correlation was observed between antioxidant and anticholinesterase activities of bioactive ingredients of this plant.  相似文献   
3.
Context: Phytochemical study and biological potential of Evax pygmaea (L.) Brot. (Asteraceae) are reported for the first time.

Objective: To identify the secondary metabolites of Evax pygmaea and to determine its antioxidant, antibacterial and cytotoxic activities.

Materials and methods: Dried aerial parts (1?kg) were macerated in 70% MeOH (5?L) during 72?h. The concentrated hydromethanolic extract was subjected to extractions with chloroform (3?×?300?mL), ethyl acetate (3?×?300?mL) and n-butanol (3?×?300?mL), successively. VLC of combined ethyl acetate (EAEP) and n-butanol (BEP) fractions was followed by column purifications. Antioxidant activity was investigated using DPPH, CUPRAC, and metal chelating, β-carotene/linoleic acid and ABTS assays. Agar method was used in the antibacterial study. Cytotoxic activity was determined by Brine shrimp lethality test in DMSO and ethanol, at varying concentrations (2, 1 and 0.2%) and (1, 0.2 and 0.1%) successively.

Results: Quercetin (1), isorhamnetin 3-O-β-d-xyloside (2), isorhamnetin 3-O-β-d-glucoside (3), quercetin 3-O-β-d-glucoside (4), quercetin 7-O-β-D-glucoside (5), patuletin 3-O-β-d-glucoside (6) were isolated from for the first time from Evax genus. The EAEP was the most active in ABTS (IC50: <3.125?μg/mL) assay whereas the BEEP exhibited the highest activity in the β-carotene/linoleic acid assay (IC50: <3.125?μg/mL). The EAEP and BEP exhibited good antibacterial activity (MIC: 40–80 µg/mL). The plant did not show any toxicity (LD50>80 µg/mL).

Discussion and conclusions: Six flavonoids were isolated for the first time from Evax pygmaea which exhibited good antioxidant and antibacterial activities.  相似文献   
4.
A series of bis(4‐amino‐5‐cyano‐pyrimidines) was synthesized and evaluated as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To further explore the multifunctional properties of the new derivatives, their antioxidant and antibacterial activities were also tested. The results showed that most of these compounds could effectively inhibit AChE and BChE. Particularly, compound 7c exhibited the best AChE inhibitory activity (IC50 = 5.72 ± 1.53 μM), whereas compound 7h was identified as the most potent BChE inhibitor (IC50 = 12.19 ± 0.57 μM). Molecular modeling study revealed that compounds 7c, 7f , and 7b showed a higher inhibitory activity than that of galantamine against both AChE and BChE. Anticholinesterase activity of compounds 7h, 7b , and 7c was significant in vitro and in silico for both enzymes, since these compounds have hydrophobic rings (Br‐phenyl, dimethyl, and methoxyphenyl), which bind very well in both sites. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activities. Indeed, in the superoxide–dimethyl sulfoxide alkaline assay, compound 7j showed very high inhibition (IC50 = 0.37 ± 0.28 μM). Also, compound 7l exhibited strong and good antibacterial activity against Staphylococcus epidermidis and Staphylococcus aureus, respectively. Taking into account the results of biological evaluation, further modifications will be designed to increase potency on different targets. In this study, the obtained results can be a new starting point for further development of multifunctional agents for the treatment of Alzheimer's disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号