首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   9篇
  国内免费   2篇
儿科学   6篇
妇产科学   12篇
基础医学   28篇
口腔科学   9篇
临床医学   20篇
内科学   27篇
皮肤病学   1篇
神经病学   18篇
特种医学   8篇
外科学   19篇
综合类   4篇
预防医学   8篇
眼科学   4篇
药学   59篇
中国医学   1篇
肿瘤学   25篇
  2022年   2篇
  2021年   9篇
  2020年   5篇
  2019年   2篇
  2018年   11篇
  2017年   6篇
  2016年   8篇
  2015年   4篇
  2014年   10篇
  2013年   13篇
  2012年   22篇
  2011年   24篇
  2010年   5篇
  2009年   4篇
  2008年   12篇
  2007年   22篇
  2006年   9篇
  2005年   13篇
  2004年   14篇
  2003年   9篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
1.
Angiogenesis, the formation of new blood vessels from an existing vasculature, is requisite for tumor growth. It entails intercellular coordination of endothelial and tumor cells through angiogenic growth factor signaling. Interruption of these events has implications in the suppression of tumor growth. PD166285, a broad-spectrum receptor tyrosine kinase (RTK) inhibitor, and PD173074, a selective FGFR1TK inhibitor, were evaluated for their anti-angiogenic activity and anti-tumor efficacy in combination with photodynamic therapy (PDT). To evaluate the anti-angiogenic and anti-tumor activities of these compounds, RTK assays, in vitro tumor cell growth and microcapillary formation assays, in vivo murine angiogenesis and anti-tumor efficacy studies utilizing RTK inhibitors in combination with photodynamic therapy were performed. PD166285 inhibited PDGFR--, EGFR-, and FGFR1TKs and c-src TK by 50% (IC50) at concentrations between 7–85nM. PD173074 displayed selective inhibitory activity towards FGFR1TK at 26nM. PD173074 demonstrated (>100 fold) selective growth inhibitory action towards human umbilical vein endothelial cells compared with a panel of tumor cell lines. Both PD166285 and PD173074 (at 10nM) inhibited the formation of microcapillaries on Matrigel-coated plastic. In vivo anti-angiogenesis studies in mice revealed that oral administration (p.o.) of either PD166285 (1–25 mg/kg) or PD173074 (25–100 mg/kg) generated dose dependent inhibition of angiogenesis. Against a murine mammary 16c tumor, significantly prolonged tumor regressions were achieved with daily p.o. doses of PD166285 (5–10 mg/kg) or PD173074 (30–60 mg/kg) following PDT compared with PDT alone (p<0.001). Many long-term survivors were also noted in combination treatment groups. PD166285 and PD173074 displayed potent anti-angiogenic and anti-tumor activity and prolonged the duration of anti-tumor response to PDT. Interference in membrane signal transduction by inhibitors of specific RTKs (e.g. FGFR1TK) should result in new chemotherapeutic agents having the ability to limit tumor angiogenesis and regrowth following cytoreductive treatments such as PDT.  相似文献   
2.
Differences in the toxicities observed for dithiocarbamates have been proposed to result from the influence of nitrogen substitution, oxidation state, and route of exposure. To better characterize the fate of dithiocarbmates in vivoas a function of structure and route of exposure, rats were administered equimolar doses of carbon disulfide (CS2), N-methyldithiocarbamate, pyrrolidine dithiocarbamate, N,N-diethyldithiocarbamate, or disulfiram daily for five days, either po or ip, and sequential blood samples obtained. Protein dithiocarbamates formed by the in vivo release of CS2, parent dithiocarbamate, and protein-bound mixed disulfides were assessed in plasma and hemolysate by measuring toluene trithiocarbonate generated upon treatment with toluene-3, 4-dithiol (TdT). To aid in determining the bioavailability of CS2 from the administered dithiocarbamates, the urinary CS2 metabolites, 2-thiothiazolidine-4-carboxylic acid (TTCA) and 2-thiothiazolidin-4-ylcarbonylglycine (TTCG), were also determined. The levels of TdT-reactive moieties detected depended upon both the compound administered and the route of exposure. Parent dithiocarbamates, with the exception of disulfiram, were eliminated from blood within 24 h; but protein associated TdT-reactive moieties persisted and accumulated with repeated exposure, regardless of the route of exposure. N-Methyldithiocarbamate demonstrated the greatest potential to produce intracellular globin modifications, presumably through its unique ability to generate a methylisothiocyanate metabolite. Urinary excretion of TTCA and TTCG was more sensitive than TdT analysis for detecting dithiocarbamate exposure, but TdT analysis appeared to be a better indicator of in vivo release of CS2 by dithiocarbamates than were urinary CS2 metabolites. These data suggest that CS2 is a more important metabolite, following oral exposure, than are other routes of exposure, e.g., inhalation or dermal. In addition, data also suggest that acid stability, nitrogen substitution, and route of exposure are important factors governing the toxicity observed for a particular dithiocarbamate.  相似文献   
3.
The functional surfaces of the porcelain fused to metal fixed partial dentures are often abraded to adjust occlusion, such restorations are often found to fail in service. This study was therefore conducted to study the effect of surface abrasion on flexural strength of glazed porcelain fused to metal samples. It was also the aim of this study to find the effect of re-glazing on flexural strength of abraded samples. A total of ninety glazed porcelain fused to metal bar samples of the dimension 15 mm × 2 mm × 1.5 mm were fabricated. These samples were then divided into three groups (30 samples each) according to the surface treatments: group A-glazed (control); group B-abraded and group C-abraded and then re-glazed (self-glazed). Flexural strength was measured by using three point bend test on universal testing machine (texture analyser) with a cross-head speed of 0.6 mm/min. Peak force at the time of failure for all the samples was recorded. Statistical analysis found that mean flexural strength was highest for group A-80.65 ± 12.81 MPa; as compared to group B-74.18 ± 10.74 MPa and group C-77.85 ± 9.39 MPa. Student’s t test indicated that the difference in the flexural strength between groups A and B was significant while it was non-significant between groups B and C and also between groups A and C. The ‘f’ test indicated that the difference between the groups was non-significant. This study therefore showed that there is a marked decrease in the flexural strength of the porcelain fused to metal restorations after occlusal abrasion. The study also found that reglazing of these restorations may not restore their flexural strength significantly.  相似文献   
4.
5.
Understanding the conductivity variations induced by compositional changes in sodium super ionic conducting (NASICON) glass materials is highly relevant for applications such as solid electrolytes for sodium (Na) ion batteries. In the research reported in this paper, NASICON-based NCAP glass (Na2.8Ca0.1Al2P3O12) was selected as the parent glass. The present study demonstrates the changes in the Na+ ion conductivity of NCAP bulk glass with the substitution of boron (NCABP: Na2.8Ca0.1Al2B0.5P2.7O12) and gallium (NCAGP: Na2.8Ca0.1Al2Ga0.5P2.7O12) for phosphorus and the resulting structural variations found in the glass network. For a detailed structural analysis of NCAP, NCABP and NCAGP glasses, micro-Raman and magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopic techniques (for 31P, 27Al, 23Na, 11B and 71Ga nuclei) were used. The Raman spectrum revealed that the NCAP glass structure is more analogous to the AlPO4 mesoporous glass structure. The 31P MAS-NMR spectrum illustrated that the NCAP glass structure consists of a high concentration of Q0 (3Al) units, followed by Q0 (2Al) units. The 27Al MAS-NMR spectrum indicates that alumina exists at five different sites, which include AlO4 units surrounded by AlO6 units, Al(OP)4, Al(OP)5, Al(OAl)6 and Al(OP)6, in the NCAP glass structure. The 31P, 27Al and 11B MAS-NMR spectra of the NCABP glass revealed the absence of B–O–Al linkages and the presence of B3–O–B4–O–P4 linkages which further leads to the formation of borate and borophosphate domains. The 71Ga MAS-NMR spectrum suggests that gallium cations in the NCAGP glass compete with the alumina cations and occupy four (GaO4), five (GaO5) and six (GaO6) coordinated sites. The Raman spectrum of NCAGP glass indicates that sodium cations have also been substituted by gallium cations in the NCAP glass structure. From impedance analysis, the dc conductivity of the NCAP glass (∼3.13 × 10−8 S cm−1) is slightly decreased with the substitution of gallium (∼2.27 × 10−8 S cm−1) but considerably decreased with the substitution of boron (∼1.46 × 10−8 S cm−1). The variation in the conductivity values are described based on the structural changes of NCAP glass with the substitution of gallium and boron.

Understanding the conductivity variations induced by compositional changes in sodium super ionic conducting (NASICON) glass materials is highly relevant for applications such as solid electrolytes for sodium (Na) ion batteries.  相似文献   
6.
7.
8.
9.
10.
The first step of photosynthesis in plants is the absorption of sunlight by pigments in the antenna complexes of photosystem II (PSII), followed by transfer of the nascent excitation energy to the reaction centers, where long-term storage as chemical energy is initiated. Quantum mechanical mechanisms must be invoked to explain the transport of excitation within individual antenna. However, it is unclear how these mechanisms influence transfer across assemblies of antenna and thus the photochemical yield at reaction centers in the functional thylakoid membrane. Here, we model light harvesting at the several-hundred-nanometer scale of the PSII membrane, while preserving the dominant quantum effects previously observed in individual complexes. We show that excitation moves diffusively through the antenna with a diffusion length of 50 nm until it reaches a reaction center, where charge separation serves as an energetic trap. The diffusion length is a single parameter that incorporates the enhancing effect of excited state delocalization on individual rates of energy transfer as well as the complex kinetics that arise due to energy transfer and loss by decay to the ground state. The diffusion length determines PSII’s high quantum efficiency in ideal conditions, as well as how it is altered by the membrane morphology and the closure of reaction centers. We anticipate that the model will be useful in resolving the nonphotochemical quenching mechanisms that PSII employs in conditions of high light stress.The first step of photosynthesis is light harvesting, the absorption and conversion of sunlight into chemical energy. In photosynthetic organisms, the functional units of light harvesting are self-assembled arrays of pigment–protein complexes called photosystems. Antenna complexes absorb and transfer the nascent excitation energy to reaction centers, where long-term storage as chemical energy is initiated (1). In plants, photosystem II (PSII) flexibly responds to changes in sunlight intensity on a seconds to minutes time scale. In dim light, under ideal conditions, PSII harvests light with a >80% quantum efficiency (2), whereas, in intense sunlight PSII dissipates excess absorbed light safely as heat via nonphotochemical quenching pathways (3). The ability of PSII to switch between efficient and dissipative states is important for optimal plant fitness in natural sunlight conditions (4). Understanding how PSII’s function arises from the structure of its constituent pigment−protein complexes is a prerequisite for systematically engineering the light-harvesting apparatus in crops (57) and could be useful for designing artificial materials with the same flexible properties (8, 9).Recent advances have established structure−function relationships within individual pigment−protein complexes, but not how these relationships affect the functioning of the dynamic PSII (grana) membrane (10). Electron microscopy and fitting of atomic resolution structures (11) place the pigment−protein complexes in the grana membrane in close proximity, enabling long-range transport. Indeed, connectivity of excitation between different PSII reaction centers has been discussed since 1964 (12), suggesting that the functional unit for PSII must involve a large area of the membrane. Two limiting cases have been used to model PSII light harvesting: The lake model assumes perfect connectivity between reaction centers across the membrane; alternatively, the membrane can be described as a collection of disconnected “puddles” of pigments that each contain one reaction center (1, 13). At present, however, resolving the spatiotemporal dynamics within the grana membrane on the relevant length (tens to hundreds of nanometers) and time (1 ps to 1 ns) scales experimentally is not possible. Structure-based modeling of the grana membrane, however, can access this wide range of length and time scales.The dense packing of the major light-harvesting antenna (LHCII, discs), which is a trimeric complex, and PSII supercomplexes (PSII-S, pills) in the grana membrane is shown in Fig. 1 A and B. PSII-S is a multiprotein complex (14) that contains the PSII core reaction center dimer, along with several minor light-harvesting complexes and LHCII (Fig. 1A, Inset). Electronic excited states in LHCII and PSII-S are delocalized over several pigments (1517), making conventional Förster theory inadequate to describe the excitation dynamics. On the protein length scale, generalized Förster (18, 19) calculations between domains of tightly coupled chlorophylls agree very well with more exact methods [e.g., the zeroth-order functional expansion of the quantum-state diffusion model (ZOFE) approximation to non-Markovian quantum state diffusion (20)] for simulating the excitation population dynamics (21, 22). This agreement suggests that the primary quantum phenomenon involved in PSII energy transfer is the site basis coherence that arises from excited states delocalized across a few (approximately three to four) pigments.Open in a separate windowFig. 1.Accurate simulation of chlorophyll fluorescence dynamics from thylakoid membranes using structure-based modeling of energy transfer in PSII. (A and B) The representative mixed (A) and segregated (B) membrane morphologies generated using Monte Carlo simulations and used throughout this work. PSII-S are indicated by the light teal pills, and LHCII, which are trimeric complexes, are indicated by the light grey-green circles. The segregated membrane forms PSII-S arrays and LHCII pools. As shown schematically in A (Bottom) existing crystal structures of PSII-S (14) and LHCII (24) were overlaid on these membrane patches to establish the locations of all chlorophyll pigments. The light teal and light grey-green dashed lines outline the excluded area associated with PSII-S and LHCII trimers respectively, in the Monte Carlo simulations. The chlorophyll pigments are indicated in green, and the protein is depicted by the grey cartoon ribbon. PSII-S is a twofold symmetric dimer of pigment−protein complexes that are outlined by black lines. LHCII-S (strongly bound LHCII), CP26, CP29, CP43, and CP47 are antenna proteins, and RC indicates the reaction center. The inhomogeneously averaged rates of energy transfer between strongly coupled clusters of pigments were calculated using generalized Förster theory. (C) Simulated fluorescence decay of the mixed membrane (solid black line) and the PSII component of experimental fluorescence decay data from thylakoid membranes from ref. 26 (red, dotted line). Inset shows the lifetime components and amplitudes of the simulated decay as calculated using our model with a Gaussian convolution (σ = 20 ps) (black line) or by fitting to three exponential decays (green bars).Here, we construct a generalized Förster model for the ∼104 pigments covering the few-hundred-nanometer length scale of the grana membrane that correctly incorporates the dynamics occurring within and between complexes on the picosecond time scale. We show how delocalized excited states, or excitons, in individual complexes affect light harvesting on the membrane length scale. The formation of excitons is sufficient to explain the high quantum efficiency of PSII in dim light. The model, by being an accurate representation of the complex kinetic network that underlies PSII light harvesting, provides mechanistic explanations for long-observed biological phenomena and sets the stage for developing a better understanding of PSII light harvesting in high light conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号